满分5 > 初中数学试题 >

如图,在Rt△ABC中,∠BAC=90°,AB=AC=2,点D在BC上运动(不能...

如图,在Rt△ABC中,∠BAC=90°,AB=AC=2,点D在BC上运动(不能到达B,C点),过D作∠ADE=45°,DE交AC于E.
(1)求证:△ABD∽△DCE;
(2)设BD=x,AE=y,求y关于x的函数表达式;
(3)当△ADE是等腰三角形时,求AE的长.

manfen5.com 满分网
(1)求出三角形的两个角相等便可证明两三角形相似; (2)利用△ABD∽△DCE,BD=x,AE=y代入比例式,便可求出y关于x的函数表达式; (3)△ADE是等腰三角形,分三种情况讨论: ①若AE=DE,知要求DE⊥AC,∵AD=,∴AE=DE=1; ②若AD=DE,由(1)条件知△ABD∽△DCE,BD=x=,BD=CE,AE=2-CE=; ③若AD=AE,则∠ADE=∠AED=45°,从而∠DAE=90°,即D点与B点重合,这与已知条件“D点不能到B,C点矛盾”,因此AD≠AE. (1)证明:由图知和已知条件: ∵∠ADB=∠DAC+∠C=∠DAC+45°, ∴∠DEC=∠DAC+∠ADE=∠DAC+45°, ∴∠ADB=∠DEC; 又∵∠B=∠C, ∴△ABD∽△DCE. (2)【解析】 由△ABD∽△DCE, ∴, ∵AB=2,BD=x,DC=, CE=2-y代入得4-2y=⇒. (3)【解析】 ①若AE=DE,则DE⊥AC, ∵AD=, ∴AE=DE=1, ②若AD=DE,由(1)条件知△ABD∽△DCE, ∴△ABD≌△DCE(有一边对应相等的两相似三角形全等), ∴AB=DC, 2=, x=, BD=CE, AE=2-CE=, ③若AD=AE, 则∠ADE=∠AED=45°,∠DAE=90°,点D在B处没走, 则AD≠AE.
复制答案
考点分析:
相关试题推荐
某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利44元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出5件.
(1)若商场平均每天要盈利1600元,每件衬衫应降价多少元?
(2)如果你是该商场经理,你将如何决策使商场平均每天能获得最大盈利?是多少?
查看答案
如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,三个顶点的坐标分别为A(2,2),B(1,0),C(3,1).
①将△ABC关于x轴作轴对称变换得△A1B1C1,则点C1的坐标为______
②将△ABC绕原点O按逆时针方向旋转90°得△A2B2C2,则点C2的坐标为______
③△A1B1C1与△A2B2C2成中心对称吗?若成中心对称,则对称中心的坐标为______

manfen5.com 满分网 查看答案
如图,在两面墙之间有一个底端在A点的梯子,当它靠在一侧墙上时,梯子的顶端在B点;当它靠在另一侧墙上时,梯子的顶端在D点.已知∠BAC=60°,∠DAE=45°,点D到地面的垂直距离DE=manfen5.com 满分网m.求点B到地面的垂直距离BC.

manfen5.com 满分网 查看答案
如图有两个质地均匀的转盘A、B,转盘A被分成3份,分别标有数字1,2,3;转盘B被3等分,分别标有数字4,5,6.小强与小华用这两个转盘玩游戏,小强说“随机转动A、B转盘各一次,转盘停止后,将A、B转盘的指针所指的数字相乘,积为偶数我赢;积为奇数你赢.”(指针指向两个扇形的交线时,重新转动转盘).
(1)小强指定的游戏规则对双方公平吗?并说明理由;
(2)小华认为只要在转盘B上修改其中一个数字,也可以使这个游戏对双方公平.你能帮助小华如何进行修改吗?

manfen5.com 满分网 查看答案
如图,在△ABC中,已知DE∥BC,AD=4,DB=8,DE=3.
(1)求manfen5.com 满分网的值;
(2)求BC的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.