满分5 > 初中数学试题 >

如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE....

如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.
(1)求证:CE=CF;
(2)在图1中,若G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?
(3)运用(1)(2)解答中所积累的经验和知识,完成下题:
如图2,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=12,E是AB上一点,且∠DCE=45°,BE=4,求DE的长.
manfen5.com 满分网manfen5.com 满分网
(1)利用已知条件,可证出△BCE≌△DCF(SAS),即CE=CF. (2)借助(1)的全等得出∠BCE=∠DCF,∴∠GCF=∠BCE+∠DCG=90°-∠GCE=45°,即∠GCF=∠GCE,又因为CE=CF,CG=CG,∴△ECG≌△FCG,∴EG=GF,∴GE=DF+GD=BE+GD. (3)过C作CG⊥AD,交AD延长线于G,先证四边形ABCG是正方形(有一组邻边相等的矩形是正方形). 再设DE=x,利用(1)、(2)的结论,在Rt△AED中利用勾股定理可求出DE. (1)证明:在正方形ABCD中, ∵BC=CD,∠B=∠CDF,BE=DF, ∴△CBE≌△CDF. ∴CE=CF. (2)【解析】 GE=BE+GD成立. ∵△CBE≌△CDF, ∴∠BCE=∠DCF. ∴∠ECD+∠ECB=∠ECD+∠FCD. 即∠ECF=∠BCD=90°. 又∠GCE=45°, ∴∠GCF=∠GCE=45°. ∵CE=CF,∠GCF=∠GCE,GC=GC, ∴△ECG≌△FCG. ∴EG=GF. ∴GE=DF+GD=BE+GD. (3)【解析】 过C作CG⊥AD,交AD延长线于G, 在直角梯形ABCD中, ∵AD∥BC,∠A=∠B=90°, 又∠CGA=90°,AB=BC, ∴四边形ABCG为正方形. ∴AG=BC=12. 已知∠DCE=45°,根据(1)(2)可知,ED=BE+DG, 设DE=x,则DG=x-4, ∴AD=AG-DG=16-x,AE=AB-BE=12-4=8. 在Rt△AED中 ∵DE2=AD2+AE2,即x2=(16-x)2+82 解得:x=10. ∴DE=10.
复制答案
考点分析:
相关试题推荐
最近感染甲型H1N1流感的人越来越多,卫生部门要求市民做好自己防护,假设有一人患了甲型H1N1流感,如果经过两轮传染后共有81人患了甲型N1H1流感,那么每轮传染中平均一个人传染了几个人?
查看答案
如图1,在⊙O中,AB为⊙O的直径,AC是弦,OC=4,∠OAC=60度.
(1)求∠AOC的度数;
(2)在图1中,P为直径BA延长线上的一点,当CP与⊙O相切时,求PO的长;
(3)如图2,一动点M从A点出发,在⊙O上按逆时针方向运动,当S△MAO=S△CAO时,求动点M所经过的弧长.
manfen5.com 满分网
查看答案
某中学开展演讲比赛活动,九(1)、九(2)班根据初赛成绩各选出5manfen5.com 满分网名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.
(1)根据右图,分别求出两班复赛的平均成绩和方差;
(2)根据(1)的计算结果,分析哪个班级的复赛成绩比较稳定.
查看答案
已知:如图,EF是矩形ABCD的对角线AC的垂直平分线,EF与对角线AC及边AD、BC分别交于点O、E、F.
(1)求证:四边形AFCE是菱形;
(2)如果FE=2ED,求AE:ED的值.

manfen5.com 满分网 查看答案
(1)解方程:x2+3x+1=0;
(2)计算:manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.