满分5 > 初中数学试题 >

如图,在Rt△ABC中,∠ACB=90°,AC=5,CB=12,AD是△ABC的...

如图,在Rt△ABC中,∠ACB=90°,AC=5,CB=12,AD是△ABC的角平分线,过A、C、D三点的圆O与斜边AB交于点E,连接DE.
(1)求证:AC=AE;
(2)求AD的长.

manfen5.com 满分网
(1)由圆O的圆周角∠ACB=90°,根据90°的圆周角所对的弦为圆的直径得到AD为圆O的直径,再根据直径所对的圆周角为直角可得三角形ADE为直角三角形,又AD是△ABC的角平分线,可得一对角相等,而这对角都为圆O的圆周角,根据同圆或等圆中,相等的圆周角所对的弦相等可得CD=ED,利用HL可证明直角三角形ACD与AED全等,根据全等三角形的对应边相等即可得证; (2)由三角形ABC为直角三角形,根据AC及CB的长,利用勾股定理求出AB的长,由第一问的结论AE=AC,用AB-AE可求出EB的长,再由(1)∠AED=90°,得到DE与AB垂直,可得三角形BDE为直角三角形,设DE=CD=x,用CB-CD表示出BD=12-x,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为CD的长,在直角三角形ACD中,由AC及CD的长,利用勾股定理即可求出AD的长. 【解析】 (1)∵∠ACB=90°,且∠ACB为圆O的圆周角(已知), ∴AD为圆O的直径(90°的圆周角所对的弦为圆的直径), ∴∠AED=90°(直径所对的圆周角为直角), 又AD是△ABC的∠BAC的平分线(已知), ∴∠CAD=∠EAD(角平分线定义), ∴CD=DE(在同圆或等圆中,相等的圆周角所对的弦相等), 在Rt△ACD和Rt△AED中, , ∴Rt△ACD≌Rt△AED(HL), ∴AC=AE(全等三角形的对应边相等); (2)∵△ABC为直角三角形,且AC=5,CB=12, ∴根据勾股定理得:AB==13, 由(1)得到∠AED=90°,则有∠BED=90°, 设CD=DE=x,则DB=BC-CD=12-x,EB=AB-AE=AB-AC=13-5=8, 在Rt△BED中,根据勾股定理得:BD2=BE2+ED2, 即(12-x)2=x2+82, 解得:x=, ∴CD=,又AC=5,△ACD为直角三角形, ∴根据勾股定理得:AD==.
复制答案
考点分析:
相关试题推荐
某商场将每台进价为3000元的彩电以3900元的销售价售出,每天可销售出6台.假设这种品牌的彩电每台降价100x(x为正整数)元,每天可多售出3x台.(注:利润=销售价-进价)
(1)设商场每天销售这种彩电获得的利润为y元,试写出y与x之间的函数关系式;
(2)销售该品牌彩电每天获得的最大利润是多少?此时,每台彩电的销售价是多少时,彩电的销售量和营业额均较高?
查看答案
现有足够多的除颜色外都相同的球供你选用,还有一个最多只能装10个球的不透明袋子.
(1)请你设计一个摸球游戏,使得从袋中任意摸出1个球,摸得红球的概率为manfen5.com 满分网,则应往袋中如何放球;
(2)若袋中装有2个红球和2个白球,搅匀后从袋中摸出一个球后,不放回,然后再摸出一个球,则请用列表或画树形图的方法列出所有等可能情况,并求出两次摸出的球都是红球的概率.
查看答案
某学校运动会长跑比赛中,某运动员从距终点90m处开始,以8m/s的速度匀加速冲刺,到达终点时速度为10m/s.
(1)求该运动员冲刺所需要的时间?
(2)求从开始冲刺起,经5s后运动员的速度?
(3)求该运动员到达距终点40m处时所需要的时间?
查看答案
在下面的网格图中,每个小正方形的边长均为1个单位,在Rt△ABC中,∠C=90°,AC=3,BC=4.
(1)试作出△ABC以A为旋转中心、沿逆时针方向旋转90°后的图形△AB1C1
(2)若点B的坐标为(-4,3),试建立合适的直角坐标系,并写出A、C两点的坐标;
(3)作出与△ABC关于原点对称的图形△A2B2C2,并写出A2、B2、C2三点的坐标.

manfen5.com 满分网 查看答案
如图,⊙O的半径OC=10cm,直线l⊥CO,垂足为H,交⊙O于A,B两点,AB=16cm,直线l平移多少厘米时能与⊙O相切?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.