满分5 > 初中数学试题 >

如图,将△AOB置于平面直角坐标系中,其中点O为坐标原点,点A的坐标为(3,0)...

如图,将△AOB置于平面直角坐标系中,其中点O为坐标原点,点A的坐标为(3,0),∠ABO=60°.
(1)求作△AOB的外接圆圆心P,并求出P点的坐标;
(2)若⊙P与y轴交于点D,求D点的坐标;
(3)若CD是⊙P的切线,求直线CD的函数解析式.

manfen5.com 满分网
(1)设⊙P与y轴交于D点,连接AD,因为∠AOD=90°,根据圆周角定理可知,AD为⊙O的直径,则圆心P为AD的中点,利用解直角三角形 求OD,再利用中点坐标公式求P点坐标. (2)在直角三角形ADO中,因为∠ADO=∠ABO=60°,OA=3,然后即可求出OD,即得D点的坐标. (3)连接PO,先求出C点的坐标,再利用待定系数法求出直线CD的解析式. 【解析】 (1)连接AD,则圆心P为AD的中点, 在直角三角形ADO中,∠ADO=∠ABO=60°, ∴tan60°=,则OD==, ∴P点的坐标为(). (2)在直角三角形ADO中, ∵∠ADO=∠ABO=60°,OA=3, ∴, ∴OD=, ∴D点的坐标为(0,); (3)连接PO,则PD=PO; ∵∠PAO=90°-60°=30°, ∠POD=∠PDO=60°, ∵CD是⊙P的切线, ∴∠PDC=90°, ∴∠CDO=30°, ∴在Rt△DCO中,tan30°=,OD=, ∴OC=1, ∴C点的坐标为(-1,0); 可设直线CD的解析式为y=kx+b, 将C,D两点的坐标代入解析式,解得, ∴直线CD的解析式:.
复制答案
考点分析:
相关试题推荐
如图1至图5,⊙O均作无滑动滚动,⊙O1、⊙O2、⊙O3、⊙O4均表示⊙O与线段AB或BC相切于端点时刻的位置,⊙O的周长为c.
阅读理【解析】

(1)如图1,⊙O从⊙O1的位置出发,沿AB滚动到⊙O2的位置,当AB=c时,⊙O恰好自转1周;
(2)如图2,∠ABC相邻的补角是n°,⊙O在∠ABC外部沿A-B-C滚动,在点B处,必须由⊙O1的位置旋转到⊙O2的位置,⊙O绕点B旋转的角∠O1BO2=n°,⊙O在点B处自转manfen5.com 满分网周.
实践应用:
(1)在阅读理解的(1)中,若AB=2c,则⊙O自转______周;若AB=l,则⊙O自转______周.在阅读理解的(2)中,若∠ABC=120°,则⊙O在点B处自转______周;若∠ABC=60°,则⊙O在点B处自转______周;
(2)如图3,∠ABC=90°,AB=BC=manfen5.com 满分网c.⊙O从⊙O1的位置出发,在∠ABC外部沿A-B-C滚动到⊙O4的位置,⊙O自转______周.
拓展联想:
(1)如图4,△ABC的周长为l,⊙O从与AB相切于点D的位置出发,在△ABC外部,按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,⊙O自转了多少周?请说明理由;
(2)如图5,多边形的周长为l,⊙O从与某边相切于点D的位置出发,在多边形外部,按顺时针方向沿多边形滚动,又回到与该边相切于点D的位置,直接写出⊙O自转的周数.
manfen5.com 满分网
查看答案
(1)如图1,圆内接△ABC中,AB=BC=CA,OD、OE为⊙O的半径,OD⊥BC于点F,OE⊥AC于点G,
求证:阴影部分四边形OFCG的面积是△ABC的面积的manfen5.com 满分网
(2)如图2,若∠DOE保持120°角度不变,
求证:当∠DOE绕着O点旋转时,由两条半径和△ABC的两条边围成的图形(图中阴影部分)面积始终是△ABC的面积的manfen5.com 满分网

manfen5.com 满分网 查看答案
某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?
查看答案
已知关于x的方程(x-3)(x-2)-p2=0
(1)无论p为何值时,方程(x-3)(x-2)-p2=0总有两个不相等的实数根吗?给出你的答案并说明理由.(2)若方程的一个根是x1=1,求方程的另一个根x2及p的值.
查看答案
如图,⊙O是Rt△ABC的外接圆,点O在AB上,BD⊥AB,点B是垂足,OD∥AC,连接CD.
(1)求证:CD是⊙O的切线;
(2)若⊙O的半径为10cm,∠A=60°,求CD的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.