某校初三年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高
m,与篮圈中心的水平距离为7m,当球出手后水平距离为4m时到达最大高度4m,设篮球运行的轨迹为抛物线,篮圈距地面3m.
(1)建立如图的平面直角坐标系,问此球能否准确投中;
(2)此时,若对方队员乙在甲前面1m处跳起盖帽拦截,已知乙的最大摸高为3.1m,那么他能否获得成功?
考点分析:
相关试题推荐
已知抛物线y=-x
2+(1-2a)x-a
2(a≠0),与x轴交于两点A(x
1,0)、B(x
2,0),(x
1<x
2).
(1)求a的取值范围,并说明A、B两点都在y轴的右侧;
(2)若抛物线与y轴交于点C,且OA+OB=3OC,求a的值.
查看答案
已知二次函数y=x
2+bx+c中,函数y与自变量x的部分对应值如下表:
(1)求该二次函数的关系式;
(2)当x为何值时,y有最小值,最小值是多少?
(3)若A(m,y
1),B(m+1,y
2)两点都在该函数的图象上,试比较y
1与y
2的大小.
查看答案
关于X的方程
.
(1)若方程有两个实数根,求k的范围.
(2)当方程的两根是一个矩形两邻边的长且矩形的对角线长为
时,求k的值.
查看答案
某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?
查看答案
已知抛物线y=ax
2上的点D、C与x轴上的点A(-6,0)、B(4,0)构成平行四边形ABCD,CD与y轴交于点E(0,6),求a的值及直线BC.
查看答案