满分5 > 初中数学试题 >

如图,在直角坐标系中,以点M(3,0)为圆心,以6为半径的圆分别交x轴的正半轴于...

如图,在直角坐标系中,以点M(3,0)为圆心,以6为半径的圆分别交x轴的正半轴于点A,交x轴的负半轴交于点B,交y轴的正半轴于点C,过点C的直线交x轴的负半轴于点D(-9,0)
(1)求A,C两点的坐标;
(2)求证:直线CD是⊙M的切线;
(3)若抛物线y=x2+bx+c经过M,A两点,求此抛物线的解析式;
(4)连接AC,若(3)中抛物线的对称轴分别与直线CD交于点E,与AC交于点F.如果点P是抛物线上的动点,是否存在这样的点P,使得S△PAM:S△CEF=manfen5.com 满分网:3?若存在,请求出此时点P的坐标;若不存在,请说明理由.(注意:本题中的结果均保留根号)

manfen5.com 满分网
(1)已知了M的坐标和圆的半径即可求出A点坐标,连接MC可在直角三角形OMC中,用勾股定理求出OC的长,即可得出C点的坐标. (2)连接MC,证MC⊥CD即可.根据OD的长和OC的长,不难得出∠ODC=30°,同理可在直角三角形OCM中,求出∠OMC=60°,由此可得出∠DCM=90°,由此可得证. (3)将M、A的坐标代入抛物线中求解即可. (4)本题可先求出三角形CEF的面积,然后根据两三角形的面积比求出三角形PAM的面积,由于AM是定值,根据三角形PAM的面积即可求出P点的纵坐标的绝对值,代入抛物线中即可求出P点的坐标. 【解析】 (1)连接CM,由题意得:OM=3,OB=3,OE=9,MC=6 OA=OM+MA=3+6=9 A(9,0) ∵OC==3 ∴C(0,) (2)证法一: 在Rt△DCO中,∵DC==6 在△DCM中,∵CM2+DC2=144 DM2=(DO+OM)2=(9+3)2=122=144 ∴CM2+DC2=DM2 ∴△DCM直角三角形. ∴MC⊥DC,而MC是⊙M的半径 ∴CD是⊙M的切线. 证法二: 在Rt△COM中,∵sin∠MCO==, ∴∠MCO=30° 在Rt△DOC中,∵tan∠DCO===, ∴∠DCO=60° ∴∠DCM=∠MCO+∠DCO=90° ∴MC⊥DC,而MC中的⊙M半径. (3)由抛物线y=x2+bx+c经过点M(3,0)和点A(9,0),可得: 解得: ∴抛物线的解析式为:y=x2-12x+27. (4)存在 设抛物线的对称轴交x轴于点H 在(2)中已证: ∴∠DCO=60°,∠CDO=30° ∵抛物线的对称轴平行于y, ∴∠CEF=∠DCO=60° ∵OD=OA=9, ∴CO垂直平分AD ∴∠CAO=∠CDO=30° 在Rt△AFH中,∠AFH=60° ∴∠EFC=60° ∴△CEF是等边三角形 过点C作CG⊥EF于点G,则CG=6 可得:EF=4,S△CEF=EF•CG=×4×6=12; 若点P在轴的上方,设点P坐标为(x,y),S△PAM=AM•y=3y,S△PAM:S△CEF=:3 ∴3y:12=:3, 解得:y=4. 当y=4时,即x2-12x+27=4,解得x=6± ∴P(6-,4)或(6+,4). ②若点P在x轴上,则点P与点M或与点A重合,此时构不成三角形. ③若点P在x轴下方,设点P的坐标为(x,y) S△PAM=AM•(-y)=-3y,S△PAM:S△CEF=:3 ∴-3y:12=:3 解得:y=-4 当y=-4时,即x2-12x+27=-4,解得x=6±. ∴P(6-,-4)或(6+,-4). ∴这样的点共有4个, ∴P(6-,4)或(6+,4)或(6-,-4)或(6+,-4).
复制答案
考点分析:
相关试题推荐
如图,抛物线的顶点坐标是manfen5.com 满分网,且经过点A(8,14).
(1)求该抛物线的解析式;
(2)设该抛物线与y轴相交于点B,与x轴相交于C、D两点(点C在点D的左边),试求点B、C、D的坐标;
(3)设点P是x轴上的任意一点,分别连接AC、BC.试判断:PA+PB与AC+BC的大小关系,并说明理由.

manfen5.com 满分网 查看答案
如图,某建筑工地上一钢管的横截面是圆环形.王师傅将直尺边缘紧靠内圆,直尺与外圆交于点A,B(AB与内圆相切于点C,其中点A在直尺的零刻度处).请观察图形,写出线段AB的长(精确到1cm),并根据得到的数据计算该钢管的横截面积.(结果用含π的式子表示)

manfen5.com 满分网 查看答案
如图,△ABC内接于⊙O,AE是∠BAC外角∠CAD的平分线,交BC延长线于点E,延长EA交⊙O于点F,连接BF,求证:FB2=FA•FE.

manfen5.com 满分网 查看答案
某校学生会准备调查初中九年级同学每天(除课间操外)的课外锻炼时间.
(1)确定调查方式时,甲同学说:“我到1班去调查全体同学”;乙同学说:“我到操场上去询问参加锻炼的同学”;丙同学说:“我到九年级每个班去随机调查一定数量的同学”.请你指出哪位同学的调查方式最为合理;
(2)他们采用了最为合理的调查方法收集数据,并绘制出如图1所示的条形统计图和如图2所示的扇形统计图,请将其补充完整;(注:图2中相邻两虚线形成的圆心角为30度.)
(3)若该校初中九年级共有240名同学,请你估计其中每天(除课间操外)课外锻炼时间不大20分钟钟的人数,并根据调查情况向学生会提出一条建议.
manfen5.com 满分网
查看答案
如图①,有四张编号为1、2、3、4的卡片,卡片的背面完全相同.现将它们搅匀并正面朝下放置在桌面上.manfen5.com 满分网
(1)从中随机抽取一张,抽到的卡片是眼睛的概率是多少?
(2)从四张卡片中随机抽取一张贴在如图②所示的大头娃娃的左眼处,然后再随机抽取一张贴在大头娃娃的右眼处,用树状图或列表法求贴法正确的概率.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.