满分5 > 初中数学试题 >

如图,⊙O的直径AB是4,过B点的直线MN是⊙O的切线,D、C是⊙O上的两点,连...

如图,⊙O的直径AB是4,过B点的直线MN是⊙O的切线,D、C是⊙O上的两点,连接AD、BD、CD和BC.
(1)求证:∠CBN=∠CDB;
(2)若DC是∠ADB的平分线,且∠DAB=15°,求DC的长.

manfen5.com 满分网
(1)由AB为⊙O的直径,得:∠ADB=90°,根据MN是⊙O的切线,可知:∠AMN=90°,根据同弧所对的圆周角相等,可知:∠ADC=∠ABC,从而证得:∠CBN=∠CDB; (2)连接OD、OC,过点O作OE⊥CD于点E,根据圆周角定理,可求得∠BOC和∠DOB的度数,故可知:∠COD的度数,在等腰△OCD中,可将CD的长求出. (1)证明:∵AB是⊙O的直径, ∴∠ADB=∠ADC+∠CDB=90°, ∵MN切⊙O于点B, ∴∠ABN=∠ABC+∠CBN=90°, ∴∠ADC+∠CDB=∠ABC+∠CBN; ∵∠ADC=∠ABC, ∴∠CBN=∠CDB; (2)【解析】 如图,连接OD、OC,过点O作OE⊥CD于点E; ∵CD平分∠ADB, ∴∠ADC=∠BDC, ∴弧AC=弧BC, ∵AB是⊙O的直径, ∴∠ADB=90°; ∵DC是∠ADB的平分线, ∴∠BDC=45°; ∴∠BOC=90°; 又∵∠DAB=15°, ∴∠DOB=30°, ∴∠DOC=120° ∵OD=OC,OE⊥CD, ∴∠DOE=60° ∴∠ODE=30°, ∵OD=2, ∴OE=1,DE=, ∴CD=2DE=2.
复制答案
考点分析:
相关试题推荐
已知关于x的方程x2-(k+1)x+manfen5.com 满分网k2+1=0
(1)k取什么值时,方程有两个实数根;
(2)如果方程的两个实数根x1、x2满足|x1|=x2,求k的值.
查看答案
在直角坐标平面内,二次函数图象的顶点为A(1,-4),且过点B(3,0).
(1)求该二次函数的解析式;
(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x轴的另一个交点的坐标.

manfen5.com 满分网 查看答案
计算:manfen5.com 满分网
查看答案
解方程:x2-6x=1.
查看答案
已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a-b+c>2;③abc>0;④4a-2b+c<0;⑤c-a>1.其中所有正确结论的序号是( )
manfen5.com 满分网
A.①②
B.①③④
C.①②③⑤
D.①②③④⑤
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.