满分5 > 初中数学试题 >

如图1,已知:抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,经过...

如图1,已知:抛物线y=manfen5.com 满分网x2+bx+c与x轴交于A、B两点,与y轴交于点C,经过B、C两点的直线是y=manfen5.com 满分网x-2,连接AC.
(1)B、C两点坐标分别为B(____________)、C(____________),抛物线的函数关系式为______
(2)判断△ABC的形状,并说明理由;
(3)若△ABC内部能否截出面积最大的矩形DEFC(顶点D、E、F、G在△ABC各边上)?若能,求出在AB边上的矩形顶点的坐标;若不能,请说明理由.
manfen5.com 满分网
(1)令x=0以及y=0代入y=x-2得出B,C的坐标.把相关坐标代入抛物线可得函数关系式. (2)已知AB,AC,BC的值,根据反勾股定理可证明△ABC是直角三角形. (3)证明△CGF∽△CAB,利用线段比求出有关线段的值.求出S矩形DEFG的最大值.再根据△ADG∽△AOC的线段比求解. 【解析】 (1)令x=0,y=-2, 当y=0代入y=x-2得出:x=4, 故B,C的坐标分别为: B(4,0),C(0,-2).(2分) y=x2-x-2.(4分) (2)△ABC是直角三角形.(5分) 证明:令y=0,则x2-x-2=0. ∴x1=-1,x2=4. ∴A(-1,0).(6分) 解法一:∵AB=5,AC=,BC=2.(7分) ∴AC2+BC2=5+20=25=AB2. ∴△ABC是直角三角形.(8分) 解法二:∵AO=1,CO=2,BO=4, ∴ ∵∠AOC=∠COB=90°, ∴△AOC∽△COB.(7分) ∴∠ACO=∠CBO. ∵∠CBO+∠BCO=90°, ∴∠ACO+∠BCO=90度. 即∠ACB=90度. ∴△ABC是直角三角形.(8分) (3)能.①当矩形两个顶点在AB上时,如图1,CO交GF于H. ∵GF∥AB, ∴△CGF∽△CAB. ∴.(9分) 解法一:设GF=x,则DE=x, CH=x,DG=OH=OC-CH=2-x. ∴S矩形DEFG=x•(2-x)=-x2+2x=-(x-)2+.(10分) 当x=时,S最大. ∴DE=,DG=1. ∵△ADG∽△AOC, ∴, ∴AD=, ∴OD=,OE=2. ∴D(-,0),E(2,0).(11分) 解法二:设DG=x,则DE=GF=. ∴S矩形DEFG=x•=-x2+5x=-(x-1)2+.(10分) ∴当x=1时,S最大. ∴DG=1,DE=. ∵△ADG∽△AOC, ∴, ∴AD=, ∴OD=,OE=2. ∴D(-,0),E(2,0).(11分) ②当矩形一个顶点在AB上时,F与C重合,如图2, ∵DG∥BC, ∴△AGD∽△ACB. ∴. 解法一:设GD=x, ∴AC=,BC=2, ∴GF=AC-AG=-. ∴S矩形DEFG=x•(-)=-x2+x =-(x-)2+.(12分) 当x=时,S最大.∴GD=,AG=, ∴AD=. ∴OD=∴D(,0)(13分) 解法二:设DE=x, ∵AC=,BC=2, ∴GC=x,AG=-x. ∴GD=2-2x. ∴S矩形DEFG=x•(2-2x)=-2x2+2x=-2(x-)2+(12分) ∴当x=时,S最大, ∴GD=,AG=. ∴AD=. ∴OD= ∴D(,0)(13分) 综上所述:当矩形两个顶点在AB上时,坐标分别为(-,0),(2,0) 当矩形一个顶点在AB上时,坐标为(,0).(14分)
复制答案
考点分析:
相关试题推荐
已知,如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E作EG⊥AC于G交BC的延长线于F.
(1)求证:AE=BE;
(2)求证:FE是⊙O的切线;
(3)若BC=6,FE=4,求FC和AG的长.

manfen5.com 满分网 查看答案
某公司试销一种成本为30元/件的新产品,按规定试销时的销售单价不低于成本单价,又不高于80元/件,试销中每天的销售量y(件)与销售单价x(元/件)满足下表中的函数关系.
x(元/件)3540455055
y(件)550500450400350
(1)试求y与x之间的函数表达式;
(2)设公司试销该产品每天获得的毛利润为S(元),求S与x之间的函数表达式(毛利润=销售总价-成本总价);
(3)当销售单价定为多少时,该公司试销这种产品每天获得的毛利润最大?最大毛利润是多少?此时每天的销售量是多少?
查看答案
如图,小岛A在港口P的南偏西45°方向,距离港口81海里处.甲船从A出发,沿AP方向以9海里/时的速度驶向港口,乙船从港口P出发,沿南偏东60°方向,以18海里/时的速度驶离港口,现两船同时出发.
(1)出发后几小时两船与港口P的距离相等;
(2)出发后几小时乙船在甲船的正东方向?(结果精确到0.1小时)(参考数据:manfen5.com 满分网≈1.41,manfen5.com 满分网≈1.73)

manfen5.com 满分网 查看答案
2008年农户李刚承包种植了4亩田的西瓜,亩产量为2000kg,根据市场需求,今年李刚扩大了承包面积,并且全部种植了高产的新品种西瓜,已知西瓜种植面积的增长率是亩产量增长率的manfen5.com 满分网,今年西瓜的总产量为21000kg,求西瓜亩产量的增长率.
查看答案
如图,⊙O的直径AB是4,过B点的直线MN是⊙O的切线,D、C是⊙O上的两点,连接AD、BD、CD和BC.
(1)求证:∠CBN=∠CDB;
(2)若DC是∠ADB的平分线,且∠DAB=15°,求DC的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.