满分5 > 初中数学试题 >

在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α...

在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.
manfen5.com 满分网
(1)如图1,观察并猜想,在旋转过程中,线段EA1与FC有怎样的数量关系?并证明你的结论;
(2)如图2,当α=30°时,试判断四边形BC1DA的形状,并说明理由;
(3)在(2)的情况下,求ED的长.
(1)根据旋转的性质得到对应边相等和对应角相等,从而得到全等三角形,根据全等三角形的性质进行证明; (2)在(1)的基础上,易发现该四边形的四条边相等,从而证明是菱形; (3)根据菱形的性质和解直角三角形的知识以及等腰三角形的性质求解. 【解析】 (1)EA1=FC. 证明:(证法一)∵AB=BC, ∴∠A=∠C. 由旋转可知,AB=BC1,∠A=∠C1,∠ABE=∠C1BF, ∴△ABE≌△C1BF. ∴BE=BF,又∵BA1=BC, ∴BA1-BE=BC-BF.即EA1=FC. (证法二)∵AB=BC,∴∠A=∠C. 由旋转可知,∠A1=∠C,A1B=CB,而∠EBC=∠FBA1, ∴△A1BF≌△CBE. ∴BE=BF,∴BA1-BE=BC-BF, 即EA1=FC. (2)四边形BC1DA是菱形. 证明:∵∠A1=∠ABA1=30°, ∴A1C1∥AB,同理AC∥BC1. ∴四边形BC1DA是平行四边形. 又∵AB=BC1, ∴四边形BC1DA是菱形. (3)(解法一)过点E作EG⊥AB于点G,则AG=BG=1. 在Rt△AEG中,AE=. 由(2)知四边形BC1DA是菱形, ∴AD=AB=2, ∴ED=AD-AE=2-. (解法二)∵∠ABC=120°,∠ABE=30°,∴∠EBC=90°. 在Rt△EBC中,BE=BC•tanC=2×tan30°=. ∴EA1=BA1-BE=2-. ∵A1C1∥AB, ∴∠A1DE=∠A. ∴∠A1DE=∠A1. ∴ED=EA1=2-.
复制答案
考点分析:
相关试题推荐
(1)已知一元二次方程ax2+bx+c=0(a≠0)的两根分别为x1、x2,则x1=______
查看答案
(1)判断下列各式是否成立,你认为成立的请在括号内打“√”,不成立的打“×”.
manfen5.com 满分网( );②manfen5.com 满分网( );
manfen5.com 满分网( );④manfen5.com 满分网( )
(2)你判断完以上各题之后,发现了什么规律请用含有n的式子将规律表示出来,并注明n的取值范围:______
查看答案
商场某种新商品每件进价是120元,在试销期间发现,当每件商品售价为130元时,每天可销售70件,当每件商品售价高于130元时,每涨价1元,日销售量就减少1件.据此规律,请回答:
(1)当每件商品售价定为170元时,每天可销售多少件商品商场获得的日盈利是多少?
(2)在上述条件不变,商品销售正常的情况下,每件商品的销售价定为多少元时,商场日盈利可达到1600元?(提示:盈利=售价-进价)
查看答案
为了向建国六十周年献礼,某校各班都在开展丰富多彩的庆祝活动,八年级(3)班开展了手工制作竞赛,每个同学都在规定时间内完成一件手工作品.陈莉同学在制作手工作品的第一、二个步骤是:①先裁下了一张长BC=20cm,宽AB=16cm的矩形纸片ABCD,②将纸片沿着直线AE折叠,点D恰好落在BC边上的F处,…请你根据①②步骤解答下列问题:
(1)找出图中∠FEC的余角;
(2)计算EC的长.

manfen5.com 满分网 查看答案
为迎接“城运会”,某射击集训队在一个月的集训中,对甲、乙两名运动员进行了10次测试,成绩如图所示:
(1)根据下图所提供的信息完成表格:
平均数众数方差
71.2
2.2
(2)如果你是教练,会选择哪位运动员参加比赛?请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.