满分5 > 初中数学试题 >

如图,已知二次函数y=x2-2x-1的图象的顶点为A.二次函数y=ax2+bx的...

如图,已知二次函数y=x2-2x-1的图象的顶点为A.二次函数y=ax2+bx的图象与x轴交于原点O及另一点C,它的顶点B在函数y=x2-2x-1的图象的对称轴上.
(1)求点A与点C的坐标;
(2)当四边形AOBC为菱形时,求函数y=ax2+bx的关系式.

manfen5.com 满分网
(1)二次函数y=ax2+bx的顶点在已知二次函数抛物线的对称轴上,可知两个函数对称轴相等,因此先根据已知函数求出对称轴. y=x2-2x-1=(x-1)2-2,所以顶点A的坐标为(1,-2)对称轴为x=1, 所以二次函数y=ax2+bx关于x=1对称,且函数与x轴的交点分别是原点和C点, 所以点C和点O关于直线l对称,所以点C的坐标为(2,0); (2)因为四边形AOBC是菱形,根据菱形性质,可以得出点O和点C关于直线AB对称,点B和点A关于直线OC对称,因此,可求出点B的坐标,点B的坐标为(1,2), 二次函数y=ax2+bx的图象经过点B(1,2),C(2,0),将B,C代入解析式,可得,, 解得,所以二次函数y=ax2+bx的关系式为y=-2x2+4x. 【解析】 (1)∵y=x2-2x-1=(x-1)2-2, ∴顶点A的坐标为(1,-2). ∵二次函数y=ax2+bx的图象与x轴交于原点O及另一点C,它的顶点B在函数y=x2-2x-1的图象的对称轴上. ∴二次函数y=ax2+bx的对称轴为:直线x=1, ∴点C和点O关于直线x=1对称, ∴点C的坐标为(2,0). (2)因为四边形AOBC是菱形,所以点B和点A关于直线OC对称, 因此,点B的坐标为(1,2). 因为二次函数y=ax2+bx的图象经过点B(1,2),C(2,0), 所以, 解得, 所以二次函数y=ax2+bx的关系式为y=-2x2+4x.
复制答案
考点分析:
相关试题推荐
如图,在等腰三角形ABC中,AB=AC,O为AB上一点,以O为圆心、OB长为半径的圆交BC于D,DE⊥AC交AC于E.
(1)求证:DE是⊙O的切线;
(2)若⊙O与AC相切于F,AB=AC=5cm,sinA=manfen5.com 满分网,求⊙O的半径的长.

manfen5.com 满分网 查看答案
如图,有一段斜坡BC长为10米,坡角∠CBD=12°,为方便残疾人的轮椅车通行,现准备把坡角降为5度.
manfen5.com 满分网
(1)求坡高CD;
(2)求斜坡新起点A与原起点B的距离(精确到0.1米).
查看答案
已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球.
(1)求从中随机抽取出一个黑球的概率是多少;
(2)若往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是manfen5.com 满分网,求y与x之间的函数关系式.
查看答案
某中学学生会为了解该校学生喜欢球类活动的情况,采取抽样调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制成如下的两幅不完整的统计图(如图1,图2要求每位同学只能选择一种自己喜欢的球类;图中用乒乓球、足球、排球、篮球代表喜欢这四种球类中的某一种球类的学生人数),请你根据图中提供的信息解答下列问题:
(1)在这次研究中,一共调查了多少名学生?
(2)喜欢排球的人数在扇形统计图中所占的圆心角是多少度?
(3)补全频数分布折线统计图.
manfen5.com 满分网
查看答案
已知:关于x的方程2x2+kx-1=0
(1)求证:方程有两个不相等的实数根;
(2)若方程的一个根是-1,求另一个根及k值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.