满分5 > 初中数学试题 >

如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一...

如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
解答下列问题:
(1)如果AB=AC,∠BAC=90°,
①当点D在线段BC上时(与点B不重合),如图乙,线段CF,BD之间的位置关系为______,数量关系为______
②当点D在线段BC的延长线时,如图丙,①中的结论是否仍然成立,为什么?
(2)如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.
试探究:当△ABC满足一个什么条件时,CF⊥BC(点C,F重合除外)画出相应图形,并说明理由.(画图不写作法)
(3)若AC=2manfen5.com 满分网,BC=3,在(2)的条件下,设正方形ADEF的边DE与线段CF相交于点P,求线段CP长的最大值.
manfen5.com 满分网
(1)可通过证明三角形ABC和三角形ACF全等来实现.因为AD=AF,AB=AC,只要证明∠BAD=∠CAF即可,∠BAD=90°-∠DAC=∠FAC,这样就构成了全等三角形判定中的SAS,△ABD≌△ACF,因此BC=CF,∠B=∠ACF,因为∠B+∠ACB=90°,那么∠ACF+ACD=90°,即FC⊥BC,也就是FC⊥BD. (2)可通过构建三角形来求解.过点A作AG⊥AC交BC于点G,如果CF⊥BD,那么∠ACF=∠AGD=90°-∠ACD,又因为∠GAD=∠CAE=90°-∠CAD.AG=AC那么根据AAS可得出△AGD≌△ACF,AG=AC,又因为∠GAC=90°,可得出∠BCA=45°. 因此△BAC满足∠BCA=45°时,CF⊥BD. (3)过点A作AQ⊥BC交BC的延长线于点Q,通过构建与线段相关的三角形相似来求解. 图中我们可以看出∠ADQ+∠PDC=90°,那么很容易就能得出,∠QAD=∠PDC,那么就能得出直角三角形ADQ∽直角三角形PDC,那么可得出关于CP、CD、AQ、QD的比例关系,因为∠BCA=45°,∠Q=90°,那么AQ=QC=2,如果设CD=x,那么可用x表示出CD、QD,又知道AQ的值和CP、CD、QD、AQ的比例关系,那么可得出关于CP和x的函数关系式,然后根据函数的性质和x的取值范围求出CP的最大值. 【解析】 (1)①CF与BD位置关系是垂直,数量关系是相等 ②当点D在BC的延长线上时①的结论仍成立 由正方形ADEF得AD=AF,∠DAF=90度 ∵∠BAC=90°, ∴∠DAF=∠BAC, ∴∠DAB=∠FAC 又∵AB=AC, ∴△DAB≌△FAC, ∴CF=BD ∠ACF=∠ABD ∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ACF=45° ∴∠BCF=∠ACB+∠ACF=90°.即CF⊥BD. (2)当∠BCA=45°时,CF⊥BD(如图) 理由是:过点A作AG⊥AC交BC于点G,∴AC=AG 可证:△GAD≌△CAF∴∠ACF=∠AGD=45° ∠BCF=∠ACB+∠ACF=90°, 即CF⊥BD. (3)当具备∠BCA=45°时, 过点A作AQ⊥BC交CB的延长线于点Q,(如图), ∵DE与CF交于点P时,此时点D位于线段CQ上, ∵∠BCA=45°,AC=2, ∴由勾股定理可求得AQ=CQ=2. 设CD=x,∴DQ=2-x, ∵∠ADB+∠ADE+∠PDC=180° 且∠ADE=90°, ∴∠ADQ+∠PDC=90°, 又∵在直角△PCD中,∠PDC+∠DPC=90° ∴∠ADQ=∠DPC, ∵∠AQD=∠DCP=90° ∴△AQD∽△DCP, ∴=,∴. ∴CP=x2+x=(x-1)2+. ∵0<x≤, ∴当x=1时,CP有最大值.
复制答案
考点分析:
相关试题推荐
2009年5月17日至21日,甲型H1N1流感在日本迅速蔓延,每天的新增病例和累计确诊病例人数如图所示.
(1)在5月17日至5月21日这5天中,日本新增甲型H1N1流感病例最多的是哪一天?该天增加了多少人?
(2)在5月17日至5月21日这5天中,日本平均每天新增加甲型H1N1流感确诊病例多少人?如果接下来的5天中,继续按这个平均数增加,那么到5月26日,日本甲型H1N1流感累计确诊病例将会达到多少人?
(3)甲型H1N1流感病毒的传染性极强,某地因1人患了甲型H1N1流感没有及时隔离治疗,经过两天传染后共有9人患了甲型H1N1流感,每天传染中平均一个人传染了几个人?如果按照这个传染速度,再经过5天的传染后,这个地区一共将会有多少人患甲型H1N1流感?

manfen5.com 满分网 查看答案
如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D,过点C作CE∥AB交直线l于点E,设直线l的旋转角为α.
(1)①当α=______度时,四边形EDBC是等腰梯形,此时AD的长为______
②当α=______度时,四边形EDBC是直角梯形,此时AD的长为______
(2)当α=90°时,判断四边形EDBC是否为菱形,并说明理由.

manfen5.com 满分网 查看答案
直角三角形通过剪切可以拼成一个与该直角三角形面积相等的矩形.方法如下:
manfen5.com 满分网
请你用上面图示的方法,解答下列问题:
(1)对任意三角形,设计一种方案,将它分成若干块,再拼成一个与原三角形面积相等的矩形;manfen5.com 满分网
(2)对任意四边形,设计一种方案,将它分成若干块,再拼成一个与原四边形面积相等的矩形.
manfen5.com 满分网
查看答案
(1)观察与发现:
小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图①);在第一次的折叠基础上第二次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图②).小明认为△AEF是等腰三角形,你同意吗?请说明理由.
(2)实践与运用:
将矩形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图③);再沿过点E的直线折叠,使点D落在BE上的点D′处,折痕为EG(如图④);再展平纸片(如图⑤).求图⑤中∠α的大小.
manfen5.com 满分网
查看答案
观察下列各式及验证过程:manfen5.com 满分网验证:manfen5.com 满分网manfen5.com 满分网验证:manfen5.com 满分网
(1)按照上述两个等式及其验证过程的基本思路,猜想manfen5.com 满分网的变形结果并进行验证;
(2)针对上述各式反映的规律,写出用n(n为大于等于2的整数)表示的等式,并进行验证.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.