满分5 > 初中数学试题 >

我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这...

我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.
(1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称正方形、长方形、直角梯形(任选两个均可);
(2)如图1,已知格点(小正方形的顶点)O(0,0),A(3,0),B(0,4),请你画出以格点为顶点,OA,OB为勾股边且对角线相等的勾股四边形OAMB;
(3)如图2,将△ABC绕顶点B按顺时针方向旋转60°,得到△DBE,连接AD,DC,∠DCB=30度.求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.

manfen5.com 满分网
(1)只要四边形中有一个角是直角,根据勾股定理就有两直角边平方的和等于斜边的平方,即此四边形中存在相邻两边的平方和等于一条对角线的平方,由此可知,正方形、长方形、直角梯形都是勾股四边形. (2)OM=AB知以格点为顶点的M共两个:M(3,4)或M(4,3). (3)欲证明DC2+BC2=AC2,只需证明∠DCE=90度. (1)【解析】 正方形、长方形、直角梯形.(任选两个均可)(2分)(填正确一个得1分) (2)【解析】 答案如图所示.M(3,4)或M′(4,3).(没有写出不扣分) (2分)(根据图形给分,一个图形正确得1分) (3)证明:连接EC, ∵△ABC≌△DBE,(5分) ∴AC=DE,BC=BE,(6分) ∵∠CBE=60°, ∴EC=BC,∠BCE=60°,(7分) ∵∠DCB=30°, ∴∠DCE=90°, ∴DC2+EC2=DE2,(8分) ∴DC2+BC2=AC2. 即四边形ABCD是勾股四边形.(10分)
复制答案
考点分析:
相关试题推荐
如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点A,B,C请在网格图中进行下列操作:
(1)请在图中确定该圆弧所在圆的圆心D的位置,D点坐标为______
(2)连接AD,CD,则⊙D的半径为______(结果保留根号),扇形DAC的圆心角度数为______
(3)若扇形DAC是某一个圆锥的侧面展开图,则该圆锥的底面半径为______(结果保留根号).
manfen5.com 满分网
查看答案
如图,P为正比例函数y=manfen5.com 满分网x图象上的一个动点,⊙P的半径为3,设点P的坐标为(x,y).
(1)求⊙P与直线x=2相切时点P的坐标.
(2)请直接写出⊙P与直线x=2相交、相离时x的取值范围.

manfen5.com 满分网 查看答案
顾客李某于今年“五•一”期间到电器商场购买空调,与营业员有如下的一段对话:
顾客李某:A品牌的空调去年“国庆”期间价格还挺高,这次便宜多了,一次降价幅度就达到19%,是不是质量有问题
营业员:不是一次降价,这是第二次降价,今年春节期间已经降了一次价,两次降价的幅度相同.我们所销售的空调质量都是很好的,尤其是A品牌系列空调的质量是一流的.
顾客李某:我们单位的同事也想买A品牌的空调,有优惠政策吗?
营业员:有,请看《购买A品牌系列空调的优惠办法》.
购买A品牌系列空调的优惠办法:
方案一:各种型号的空调每台价格优惠5%,送货上门,负责安装,每台空调另加运输费和安装费共90元.
方案二:各种型号的空调每台价格优惠2%,送货上门,负责安装,免运输费和安装费.
根据以上对话和A品牌系列空调销售的优惠办法,请你回答下列问题:
(1)求A品牌系列空调平均每次降价的百分率?
(2)请你为顾客李某决策,选择哪种优惠更合算,并说明为什么?
查看答案
已知a、b、c是三角形的三条边长,且关于x的方程(c-b)x2+2(b-a)x+(a-b)=0有两个相等的实数根,试判断三角形的形状.
查看答案
已知a、b、c均为实数,且manfen5.com 满分网+|b+1|+(c+3)2=0,求方程ax2+bx+c=0的根.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.