满分5 > 初中数学试题 >

如图1,点C将线段AB分成两部分,如果,那么称点C为线段AB的黄金分割点.某研究...

如图1,点C将线段AB分成两部分,如果manfen5.com 满分网,那么称点C为线段AB的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1,S2,如果manfen5.com 满分网,那么称直线l为该图形的黄金分割线.
(1)研究小组猜想:在△ABC中,若点D为AB边上的黄金分割点(如图2),则直线CD是△ABC的黄金分割线.你认为对吗?为什么?
(2)请你说明:三角形的中线是否也是该三角形的黄金分割线?
(3)研究小组在进一步探究中发现:过点C任作一条直线交AB于点E,再过点D作直线DF∥CE,交AC于点F,连接EF(如图3),则直线EF也是△ABC的黄金分割线.请你说明理由.
(4)如图4,点E是平行四边形ABCD的边AB的黄金分割点,过点E作EF∥AD,交DC于点F,显然直线EF是平行四边形ABCD的黄金分割线.请你画一条平行四边形ABCD的黄金分割线,使它不经过平行四边形ABCD各边黄金分割点.
manfen5.com 满分网
(1)若点D为AB边上的黄金分割点,则有.如果设△ABC的边AB上的高为h,根据三角形的面积公式,易得,,即有,根据图形的黄金分割线的定义即可判断; (2)由于等底同高的两个三角形的面积相等,所以三角形任意一边上的中线都将三角形分成面积相等的两部分,即有,则,从而可知三角形的中线不可能是该三角形的黄金分割线; (3)由于直线CD是△ABC的黄金分割线,所以.要想说明直线EF也是△ABC的黄金分割线,只需证明,即证S△ADC=S△AEF,S△BDC=S四边形BEFC即可.因为DF∥CE,所以△DFC和△DFE的公共边DF上的高也相等,所以有S△DFC=S△DFE,所以S△ADC=S△ADF+S△DFC=S△ADF+S△DFE=S△AEF,S△BDC=S四边形BEFC. (4)根据黄金分割线的定义即可作出.本题答案不唯一,作法有无数种. 【解析】 (1)直线CD是△ABC的黄金分割线.理由如下: 设△ABC的边AB上的高为h. 则,,, ∴,. 又∵点D为边AB的黄金分割点, ∴, ∴. 故直线CD是△ABC的黄金分割线. (2)∵三角形的中线将三角形分成面积相等的两部分, ∴,即, 故三角形的中线不可能是该三角形的黄金分割线. (3)∵DF∥CE, ∴△DFC和△DFE的公共边DF上的高也相等, ∴S△DFC=S△DFE, ∴S△ADC=S△ADF+S△DFC=S△ADF+S△DFE=S△AEF,S△BDC=S四边形BEFC. 又∵, ∴. 因此,直线EF也是△ABC的黄金分割线.(7分) (4)画法不惟一,现提供两种画法; 画法一:如答图1,取EF的中点G,再过点G作一条直线分别交AB,DC于M,N点,则直线MN就是平行四边形ABCD的黄金分割线. 画法二:如答图2,在DF上取一点N,连接EN,再过点F作FM∥NE交AB于点M,连接MN,则直线MN就是平行四边形ABCD的黄金分割线. (9分)
复制答案
考点分析:
相关试题推荐
阅读下面的材料:
∵ax2+bx+c=0(a≠0)的根为manfen5.com 满分网manfen5.com 满分网
manfen5.com 满分网manfen5.com 满分网
综上得,设ax2+bx+c=0(a≠0)的两根为x1、x2,则有x1+x2=manfen5.com 满分网,x1x2=manfen5.com 满分网
请利用这一结论解决下列问题:
(1)若x2-px+q=0的两根为-1和3,求p和q的值;
(2)设方程3x2+2x-1=0的根为x1、x2,求manfen5.com 满分网的值.
查看答案
据2005年5月8日《南通日报》报道:今年“五•一”黄金周期间,我市实现旅游收入再创历史新高,旅游消费呈现多样化,各项消费所占的比例如图秘所示,其中住宿消费为3438.24万元.
(1)求我市今年“五•一”黄金周期间旅游消费共多少亿元?旅游消费中各项消费的中位数是多少万元?
(2)对于“五•一”黄金周期间的旅游消费,如果我市2007年要达到3.42亿元的目标,那么,2005年到2007年的平均增长率是多少?

manfen5.com 满分网 查看答案
将进货单价为40元的商品按50元售出时,就能卖出500个.已知这种商品每个涨价1元,其销售量就减少10个,问为了赚得8000元的利润,而成本价又不高于10000元,售价应定为多少?这时应进货多少个?
查看答案
已知实数满足manfen5.com 满分网,求x-20082的值.
查看答案
2x2-9x+8=0.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.