连接AB、O1O2,两线段交于点C,由垂径定理可得:O1O2⊥AB且平分AB,再解Rt△O1CA、Rt△O2CA,可得∠O1AC、∠O2AC,即可求得∠O1AO2的度数.
【解析】
连接AB、O1O2,两线段交于点C,如下图所示:
①∵AB为两圆的交线,O1O2为两圆圆心的连线,
∴O1O2⊥AB且平分AB;
∵已知O1A=2,O2A=,AB=2,
∴在Rt△O1CA中,cos∠O1AC=,
∴∠O1AC=60°;
在Rt△O2CA中,cos∠O2AC=,
∴∠O2AC=45°,
∴∠O1AO2=∠O1AC+∠O2AC=105°,
②当如图所示:
同理可得:∴∠O1AO2=∠O1AC-∠O2AC=15°,
故此题应该填105°或15°.