满分5 > 初中数学试题 >

已知二次函数y1=ax2+bx+c(a≠0)的图象经过三点(1,0),(-3,0...

已知二次函数y1=ax2+bx+c(a≠0)的图象经过三点(1,0),(-3,0),(0,-manfen5.com 满分网).
(1)求二次函数的解析式,并在给定的直角坐标系中作出这个函数的图象;
(2)若反比例函数y2=manfen5.com 满分网(x>0)的图象与二次函数y1=ax2+bx+c(a≠0)的图象在第一象限内交于点A(x,y),x落在两个相邻的正整数之间,请你观察图象,写出这两个相邻的正整数;
(3)若反比例函数y2=manfen5.com 满分网(x>0,k>0)的图象与二次函数y1=ax2+bx+c(a≠0)的图象在第一象限内的交点A,点A的横坐标x满足2<x<3,试求实数k的取值范围.
manfen5.com 满分网
(1)已知了抛物线与x轴的交点,可用交点式来设二次函数的解析式.然后将另一点的坐标代入即可求出函数的解析式. (2)可根据(1)的抛物线的解析式和反比例函数的解析式来联立方程组,求出的方程组的解就是两函数的交点坐标,然后找出第一象限内交点的坐标,即可得出符合条件的x的值,进而可写出所求的两个正整数. (3)点A的横坐标x满足2<x<3,可通过x=2,x=3两个点上抛物线与反比例函数的大小关系即可求出k的取值范围. 【解析】 (1)设抛物线解析式为y=a(x-1)(x+3), 将(0,-)代入,解得a=. ∴抛物线解析式为y=x2+x-. (2)正确的画出反比例函数在第一象限内的图象, 由图象可知,交点的横坐标x落在1和2之间,从而得出这两个相邻的正整数为1与2. (3)由函数图象或函数性质可知:当2<x<3时, 对y1=x2+x-,y1随着x增大而增大, 对y2=(k>0),y2随着x的增大而减小. 因为A(x,y)为二次函数图象与反比例函数图象的交点, 所以当x=2时,由反比例函数图象在二次函数上方得y2>y1, 即>×22+2-, 解得k>5. 同理,当x=3时,由二次函数图象在反比例上方得y1>y2, 即×32+3->, 解k<18, 所以K的取值范围为5<k<18.
复制答案
考点分析:
相关试题推荐
已知:等腰三角形OAB在直角坐标系中的位置如图,点A的坐标为(manfen5.com 满分网),点B的坐标为(-6,0).
(1)若三角形OAB关于y轴的轴对称图形是三角形OA′B′,请直接写出A、B的对称点A′、B′的坐标;
(2)若将三角形OAB沿x轴向右平移a个单位,此时点A恰好落在反比例函数y=manfen5.com 满分网的图象上,求a的值;
(3)若三角形OAB绕点O按逆时针方向旋转α度(0<α<90).
①当α=30°时点B恰好落在反比例函数y=manfen5.com 满分网的图象上,求k的值;
②问点A、B能否同时落在①中的反比例函数的图象上,若能,求出α的值;若不能,请说明理由.

manfen5.com 满分网 查看答案
跳绳时,绳甩到最高处时的形状是抛物线.正在甩绳的甲、乙两名同学拿绳的手间距AB为6米,到地面的距离AO和BD均为0.9米,身高为1.4米的小丽站在距点O的水平距离为1米的点F处,绳子甩到最高处时刚好通过她的头顶点E.以点O为原点建立如图所示的平面直角坐标系,设此抛物线的解析式为y=ax2+bx+0.9.
(1)求该抛物线的解析式;
(2)如果小华站在OD之间,且离点O的距离为3米,当绳子甩到最高处时刚好通过他的头顶,请你算出小华的身高;
(3)如果身高为1.4米的小丽站在OD之间,且离点O的距离为t米,绳子甩到最高处时超过她的头顶,请结合图象,写出t的取值范围______

manfen5.com 满分网 查看答案
某气球内充满了一定质量的气球,当温度不变时,气球内气球的气压p(千帕)是气球的体积V(米2)的反比例函数,其图象如图所示.(千帕是一种压强单位)
(1)写出这个函数的解析式;
(2)当气球的体积为0.8立方米时,气球内的气压是多少千帕?
(3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米?

manfen5.com 满分网 查看答案
(1)已知二次函数y=-2x2+8,求这个函数图象的顶点坐标、对称轴以及函数的最大值;
(2)已知二次函数的图象经过点(0,-1),且顶点坐标为(2,-3).求该二次函数的解析式.
查看答案
已知反比例函数manfen5.com 满分网的图象经过点A(2,3).
(1)求这个函数的解析式;
(2)请判断点B(1,6),点C(-3,2)是否在这个反比例函数的图象上,并说明理由.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.