通过作辅助线,把所求线段FG转化到直角三角形中,使用勾股定理,根据折叠的性质:对应线段相等,连接EF,EG,GB,再运用勾股定理求出相关线段的长度.
【解析】
作GH⊥AB,垂足为点H,连接EF,EG,GB,
由折叠的性质可知,FB=EF(设为x),EG=GB,
则AF=12-x,
由点B落在AD边上的中点E处,可知AE=AD=5,
在Rt△AEF中,由勾股定理得,
AE2+AF2=EF2,即52+(12-x)2=x2,解得x=,
设CG=y,则DG=12-y,在Rt△BCG和Rt△DEG中,
由BG=EG得,BC2+CG2=DG2+DE2,
即:102+y2=(12-y)2+52,解得y=,
∴FH=FB-BH=FB-CG=x-y=,
在Rt△FGH中,FG===.