阅读下面的材料,并解答问题:
问题1:已知正数,有下列命题
;
;
;
根据以上三个命题所提供的规律猜想:
______,
以上规律可表示为a+b______
问题2:建造一个容积为8立方米,深2米的长方形无盖水池,池底和池壁的造价分别为每平方米120元和80元.
(1)设池长为x米,水池总造价为y(元),求y和x的函数关系式;
(2)应用“问题1”题中的规律,求水池的最低造价.
考点分析:
相关试题推荐
已知关于x的方程x
2+(2k+1)x+k
2-2=0有两个不相等的实数根,
(1)试求k的取值范围;
(2)是否存在实数k,使得此方程两根的平方和等于11?若存在,求出相应的k值;若不存在,说明理由.
查看答案
如图所示,一段街道的两边缘所在直线分别为AB,PQ,并且AB∥PQ.建筑物的一端DE所在的直线MN⊥AB于点M,交PQ于点N.小亮从胜利街的A处,沿着AB方向前进,小明一直站在点P的位置等候小亮.
(1)请你在图中画出小亮恰好能看见小明时的视线,以及此时小亮所在位置(用点C标出);
(2)已知:MN=20 m,MD=8 m,PN=24 m,求(1)中的点C到胜利街口的距离CM.
查看答案
某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.现该商场要保证每天盈利6 000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?
查看答案
如图矩形ABCD中,E为BC上一点,DF⊥AE于F.
(1)求证:△ABE∽△DFA;
(2)若AB=6,AD=12,BE=8,求DF的长.
查看答案