在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:
摸球的次数n | 100 | 150 | 200 | 500 | 800 | 1000 |
摸到白球的次数m | 58 | 96 | 116 | 295 | 484 | 601 |
摸到白球的频率 | 0.58 | 0.64 | 0.58 | 0.59 | 0.605 | 0.601 |
(1)请估计:当n很大时,摸到白球的频率将会接近______;
(2)假如你去摸一次,你摸到白球的概率是______,摸到黑球的概率是______;
(3)试估算口袋中黑、白两种颜色的球各有多少只?
(4)解决了上面的问题,小明同学猛然顿悟,过去一个悬而未决的问题有办法了.这个问题是:在一个不透明的口袋里装有若干个白球,在不允许将球倒出来数的情况下,如何估计白球的个数(可以借助其他工具及用品)请你应用统计与概率的思想和方法解决这个问题,写出解决这个问题的主要步骤及估算方法.
考点分析:
相关试题推荐
如图(a),两个不全等的等腰直角三角形OAB和OCD叠放在一起,并且有公共的直角顶点O.
(1)将图(a)中的△OAB绕点O顺时针旋转90°角,在图(b)中作出旋转后的△OAB(保留作图痕迹,不写作法,不证明);
(2)在图(a)中,你发现线段AC,BD的数量关系是______,直线AC,BD相交成______度角;
(3)将图(a)中的△OAB绕点O顺时针旋转一个锐角,得到图(c),这时(2)中的两个结论是否成立?作出判断并说明理由.若△OAB绕点O继续旋转更大的角时,结论仍然成立吗?作出判断,不必说明理由.
查看答案
如图,在平面直角坐标系xOy中,直径为10的⊙E交x轴于点A、B,交y轴于点C、D,且点A、B的坐标分别为(-4,0)、(2,0).
(1)求圆心E的坐标;
(2)求点C、D的坐标.
查看答案
甲、乙两队进行拔河比赛,裁判员让两队队长用“石头、剪子、布”的手势方式选择场地位置.规则是:石头胜剪子,剪子胜布,布胜石头,手势相同再决胜负.请你说明裁判员的这种作法对甲、乙双方是否公平,为什么?(用树状图或列表法解答)
查看答案
方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,-1).
①把△ABC向上平移5个单位后得到对应的△A
1B
1C
1,画出△A
1B
1C
1,并写出C
1的坐标;
②画出△A
1B
1C
1绕点O逆时针旋转90°后的△A
2B
2C
2,并求点C
1旋转到C
2所经过的路线长.
查看答案
某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.
(1)请你补全这个输水管道的圆形截面;
(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.
查看答案