满分5 >
初中数学试题 >
下列函数表达式中,表示y是x的反比例函数的是( ) A.y=x2+2 B.y=2...
下列函数表达式中,表示y是x的反比例函数的是( )
A.y=x
2+2
B.y=2
C.y=x+2
D.y=
考点分析:
相关试题推荐
把方程x(2x-1)=1化成ax
2+bx+c=0的形式,a、b、c的一组值是( )
A.2、-1、-1
B.2、-1、1
C.2、1、-1
D.2、1、1
查看答案
从正面观察下图的两个物体,看到的是( )
A.
B.
C.
D.
查看答案
已知抛物线y=ax
2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x
2-10x+16=0的两个根,且抛物线的对称轴是直线x=-2.
(1)求A、B、C三点的坐标;
(2)求此抛物线的表达式;
(3)连接AC、BC,若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;
(4)在(3)的基础上试说明S是否存在最大值?若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.
查看答案
AB是⊙O的直径,点E是半圆上一动点(点E与点A、B都不重合),点C是BE延长线上的一点,且CD⊥AB,垂足为D,CD与AE交于点H,点H与点A不重合.
(1)求证:△AHD∽△CBD;
(2)连HO,若CD=AB=2,求HD+HO的值.
查看答案
已知:等腰Rt△ABC中,∠A=90°,
(1)如图1,E为AB上任意一点,以CE为斜边作等腰Rt△CDE,连接AD,则有AD∥BC;
(2)若将等腰Rt△ABC改为正△ABC,如图2所示,E为AB边上任一点,△CDE为正三角形,连接AD,上述结论还成立吗?答______;
(3)若△ABC为任意等腰三角形,AB=AC,如图3,E为AB上任一点,△DEC∽△ABC,连接AD,请问AD与BC的位置关系怎样?答:______.
请你在上述3个结论中,任选一个结论进行证明.
查看答案