满分5 > 初中数学试题 >

如图,抛物线y=-x2+bx+c与x轴交于A(1,0),B(-3,0)两点. (...

如图,抛物线y=-x2+bx+c与x轴交于A(1,0),B(-3,0)两点.
(1)求该抛物线的解析式;
(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;
(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由.

manfen5.com 满分网
(1)根据题意可知,将点A、B代入函数解析式,列得方程组即可求得b、c的值,求得函数解析式; (2)根据题意可知,边AC的长是定值,要想△QAC的周长最小,即是AQ+CQ最小,所以此题的关键是确定点Q的位置,找到点A的对称点B,求得直线BC的解析式,求得与对称轴的交点即是所求; (3)存在,设得点P的坐标,将△BCP的面积表示成二次函数,根据二次函数最值的方法即可求得点P的坐标. 【解析】 (1)将A(1,0),B(-3,0)代y=-x2+bx+c中得 (2分) ∴(3分) ∴抛物线解析式为:y=-x2-2x+3;(4分) (2)存在(5分) 理由如下:由题知A、B两点关于抛物线的对称轴x=-1对称 ∴直线BC与x=-1的交点即为Q点,此时△AQC周长最小 ∵y=-x2-2x+3 ∴C的坐标为:(0,3) 直线BC解析式为:y=x+3(6分) Q点坐标即为 解得 ∴Q(-1,2);(7分) (3)存在.(8分) 理由如下:设P点(x,-x2-2x+3)(-3<x<0) ∵S△BPC=S四边形BPCO-S△BOC=S四边形BPCO- 若S四边形BPCO有最大值,则S△BPC就最大, ∴S四边形BPCO=S△BPE+S直角梯形PEOC(9分) =BE•PE+OE(PE+OC) =(x+3)(-x2-2x+3)+(-x)(-x2-2x+3+3) = 当x=-时,S四边形BPCO最大值= ∴S△BPC最大=(10分) 当x=-时,-x2-2x+3= ∴点P坐标为(-,).(11分)
复制答案
考点分析:
相关试题推荐
某商场购进一批单价为5元的日用商品.如果以单价7元销售,每天可售出160件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量每天就相应减少20件.设这种商品的销售单价为x元,商品每天销售这种商品所获得的利润为y元.
(1)给定x的一些值,请计算y的一些值;
x7891011
y     
(2)求y与x之间的函数关系式,并探索:当商品的销售单价定为多少元时,该商店销售这种商品获得的利润最大?这时每天销售的商品是多少件?
查看答案
如图,点A、B、D、E在⊙O上,弦AE、BD的延长线相交于点C.若AB是⊙O的直径,D是BC的manfen5.com 满分网中点.
(1)试判断AB、AC之间的大小关系,并给出证明;
(2)在上述题设条件下,△ABC还需满足什么条件,点E才一定是AC的中点.(直接写出结论)
查看答案
如图,点P的坐标为(2,manfen5.com 满分网),过点P作x轴的平行线交y轴于点A,交双曲线y=manfen5.com 满分网(x>0)于点N;作PM⊥AN交双曲线y=manfen5.com 满分网(x>0)于点M,连接AM.已知PN=4.
(1)求k的值.(2)求△APM的面积.

manfen5.com 满分网 查看答案
如图,半圆的直径AB=10,点C在半圆上,BC=6.
(1)求弦AC的长;
(2)若P为AB的中点,PE⊥AB交AC于点E,求PE的长.

manfen5.com 满分网 查看答案
已知,在同一直角坐标系中,反比例函数y=manfen5.com 满分网与二次函数y=-x2+2x+c的图象交于点A(-1,m).
(1)求m、c的值;
(2)求二次函数图象的对称轴和顶点坐标.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.