满分5 > 初中数学试题 >

如图所示,△ABC是直角三角形,∠ABC=90°,以AB为直径的⊙O交AC于点E...

如图所示,△ABC是直角三角形,∠ABC=90°,以AB为直径的⊙O交AC于点E,点D是BC边的中点,连接DE.
(1)求证:DE与⊙O相切;
(2)若⊙O的半径为manfen5.com 满分网,DE=3,求AE.

manfen5.com 满分网
(1)根据切线的判定定理只需证明OE⊥DE即可; (2)根据(1)中的证明过程,会发现BC=2DE,根据勾股定理求得AC的长,进一步求得直角三角形斜边上的高BE,最后根据勾股定理求得AE的长. 【解析】 (1)证明:连接OE,BE, ∵AB是直径. ∴BE⊥AC. ∵D是BC的中点, ∴DE=DB. ∴∠DBE=∠DEB. 又OE=OB, ∴∠OBE=∠OEB. ∴∠DBE+∠OBE=∠DEB+∠OEB. 即∠ABD=∠OED. 但∠ABC=90°, ∴∠OED=90°. ∴DE是⊙O的切线. (2)法1:∵∠ABC=90°,AB=2,BC=2DE=6, ∴AC=4. ∴BE=3. ∴AE=; 法2:∵(8分) ∴(10分) ∴.(12分)
复制答案
考点分析:
相关试题推荐
某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?
查看答案
小明、小华两人各自投掷一个质地均匀的正方体骰子,观察向上一面的点数.
(1)求两个骰子点数的和是9的概率;
(2)小明、小华约定:如果两者之积为奇数,那么小明得1分.如果两者之积为偶数,那么小华得1分.连续投掷20次,谁得分高,谁就获奖.你认为这个游戏公平吗?如果不公平,请为他们设计一个公平的游戏.
查看答案
在下面的网格图中,每个小正方形的边长均为1个单位,在Rt△ABC中,∠C=90°,AC=3,BC=4.
(1)试作出△ABC以A为旋转中心、沿逆时针方向旋转90°后的图形△AB1C1
(2)若点B的坐标为(-4,3),试建立合适的直角坐标系,并写出A、C两点的坐标;
(3)作出与△ABC关于原点对称的图形△A2B2C2,并写出A2、B2、C2三点的坐标.

manfen5.com 满分网 查看答案
解方程:x2-3x-1=0
查看答案
计算:manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.