满分5 > 初中数学试题 >

如图,抛物线y=-x2+bx+c与x轴交于A(1,0),B(-3,0)两点. (...

如图,抛物线y=-x2+bx+c与x轴交于A(1,0),B(-3,0)两点.
(1)求该抛物线的解析式;
(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;
(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由.

manfen5.com 满分网
(1)根据题意可知,将点A、B代入函数解析式,列得方程组即可求得b、c的值,求得函数解析式; (2)根据题意可知,边AC的长是定值,要想△QAC的周长最小,即是AQ+CQ最小,所以此题的关键是确定点Q的位置,找到点A的对称点B,求得直线BC的解析式,求得与对称轴的交点即是所求; (3)存在,设得点P的坐标,将△BCP的面积表示成二次函数,根据二次函数最值的方法即可求得点P的坐标. 【解析】 (1)将A(1,0),B(-3,0)代y=-x2+bx+c中得 (2分) ∴(3分) ∴抛物线解析式为:y=-x2-2x+3;(4分) (2)存在(5分) 理由如下:由题知A、B两点关于抛物线的对称轴x=-1对称 ∴直线BC与x=-1的交点即为Q点,此时△AQC周长最小 ∵y=-x2-2x+3 ∴C的坐标为:(0,3) 直线BC解析式为:y=x+3(6分) Q点坐标即为 解得 ∴Q(-1,2);(7分) (3)存在.(8分) 理由如下:设P点(x,-x2-2x+3)(-3<x<0) ∵S△BPC=S四边形BPCO-S△BOC=S四边形BPCO- 若S四边形BPCO有最大值,则S△BPC就最大, ∴S四边形BPCO=S△BPE+S直角梯形PEOC(9分) =BE•PE+OE(PE+OC) =(x+3)(-x2-2x+3)+(-x)(-x2-2x+3+3) = 当x=-时,S四边形BPCO最大值= ∴S△BPC最大=(10分) 当x=-时,-x2-2x+3= ∴点P坐标为(-,).(11分)
复制答案
考点分析:
相关试题推荐
如图,梯形ABCD是拦水坝的横断面图,(图中i=1:manfen5.com 满分网是指坡面的铅直高度DE与水平宽度CE的比),∠B=60°,AB=6,AD=4,求拦水坝的横断面ABCD的面积.(结果保留三位有效数字.参考数据:manfen5.com 满分网≈1.732,manfen5.com 满分网≈1.414)

manfen5.com 满分网 查看答案
正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直.
(1)证明:Rt△ABM∽Rt△MCN;
(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN的面积最大,并求出最大面积;
(3)当M点运动到什么位置时Rt△ABM∽Rt△AMN,求此时x的值.

manfen5.com 满分网 查看答案
小明和小亮是一对双胞胎,他们的爸爸买了两套不同品牌的运动服送给他们,小明和小亮都想先挑选.于是小明设计了如下游戏来决定谁先挑选.游戏规则是:在一个不透明的袋子里装有除数字以外其它均相同的4个小球,上面分别标有数字1,2,3,4.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为奇数,则小明先挑选;否则小亮先挑选.
(1)用树状图或列表法求出小明先挑选的概率;
(2)你认为这个游戏公平吗?请说明理由.
查看答案
有一批图形计算器,原售价为每台800元,在甲、乙两家公司销售.甲公司用如下方法促销:买一台单价为780元,买两台每台都为760元.依此类推,即每多买一台则所买各台单价均再减20元,但最低不能低于每台440元;乙公司一律按原售价的75%促销.某单位需购买一批图形计算器:
(1)若此单位需购买6台图形计算器,应去哪家公司购买花费较少;
(2)若此单位恰好花费7500元,在同一家公司购买了一定数量的图形计算器,请问是在哪家公司购买的,数量是多少?
查看答案
在学习实践科学发展观的活动中,某单位在如图所示的办公楼迎街的墙面上垂挂一长为30米的宣传条幅AE,张明同学站在离办公楼的地面C处测得条幅顶端A的仰角为50°,测得条幅底端E的仰角为30度.问张明同学是在离该单位办公楼水平距离多远的地方进行测量?(精确到整数米)
(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20,sin30°=0.50,cos30°≈0.87,tan30°≈0.58)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.