满分5 > 初中数学试题 >

如图1,在等腰梯形ABCD中,AD∥BC,E是AB的中点,过点E作EF∥BC交C...

如图1,在等腰梯形ABCD中,AD∥BC,E是AB的中点,过点E作EF∥BC交CD于点F.AB=4,BC=6,∠B=60度.
(1)求点E到BC的距离;
(2)点P为线段EF上的一个动点,过P作PM⊥EF交BC于点M,过M作MN∥AB交折线ADC于点N,连接PN,设EP=x.
①当点N在线段AD上时(如图2),△PMN的形状是否发生改变?若不变,求出△PMN的周长;若改变,请说明理由;
②当点N在线段DC上时(如图3),是否存在点P,使△PMN为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.
manfen5.com 满分网
(1)可通过构建直角三角形然后运用勾股定理求解. (2)①△PMN的形状不会变化,可通过做EG⊥BC于G,不难得出PM=EG,这样就能在三角形BEG中求出EG的值,也就求出了PM的值,如果做PH⊥MN于H,PH是三角形PMH和PHN的公共边,在直角三角形PHM中,有PM的值,∠PMN的度数也不难求出,那么就能求出MH和PH的值,也就求出HN和PN的值了,有了PN,PM,MN的值,就能求出三角形MPN的周长了. ②本题分两种情况进行讨论: 1、N在CD的DF段时,PM=PN.这种情况同①的计算方法. 2、N在CD的CF段时,又分两种情况进行讨论 MP=MN时,MC=MN=MP,这样有了MC的值,x也就能求出来了 NP=NM时,我们不难得出∠PMN=120°,又因为∠MNC=60°因此∠PNM+∠MNC=180度.这样点P与F就重合了,△PMC即这是个直角三角形,然后根据三角函数求出MC的值,然后就能求出x了. 综合上面的分析把△PMC是等腰三角形的情况找出来就行了. 【解析】 (1)如图1,过点E作EG⊥BC于点G. ∵E为AB的中点, ∴BE=AB=2 在Rt△EBG中,∠B=60°,∴∠BEG=30度. ∴BG=BE=1,EG= 即点E到BC的距离为 (2)①当点N在线段AD上运动时,△PMN的形状不发生改变. ∵PM⊥EF,EG⊥EF, ∴PM∥EG,又EF∥BC, ∴四边形EPMG为矩形, ∴EP=GM,PM=EG= 同理MN=AB=4. 如图2,过点P作PH⊥MN于H, ∵MN∥AB, ∴∠NMC=∠B=60°,又∠PMC=90°, ∴∠PMH=∠PMC-∠NMC=30°. ∴PH=PM= ∴MH=PM•cos30°= 则NH=MN-MH=4- 在Rt△PNH中,PN= ∴△PMN的周长=PM+PN+MN= ②当点N在线段DC上运动时,△PMN的形状发生改变,但△MNC恒为等边三角形. 当PM=PN时,如图3,作PR⊥MN于R,则MR=NR. 类似①,PM=,∠PMR=30°, MR=PMcos30°=×=, ∴MN=2MR=3. ∵△MNC是等边三角形, ∴MC=MN=3. 此时,x=EP=GM=BC-BG-MC=6-1-3=2. 当MP=MN时, ∵EG=, ∴MP=MN=, ∵∠B=∠C=60°, ∴△MNC是等边三角形, ∴MC=MN=MP=(如图4), 此时,x=EP=GM=6-1-, 当NP=NM时,如图5,∠NPM=∠PMN=30度. 则∠PNM=120°,又∠MNC=60°, ∴∠PNM+∠MNC=180度. 因此点P与F重合,△PMC为直角三角形. ∴MC=PM•tan30°=1. 此时,x=EP=GM=6-1-1=4. 综上所述,当x=2或4或(5-)时,△PMN为等腰三角形.
复制答案
考点分析:
相关试题推荐
种植能手小李的实验田可种植A种作物或B种作物(A、B两种作物不能同时种植),原来的种植情况如表.通过参加农业科技培训,小李提高了种植技术.现准备在原有的基础上增种,以提高总产量.但根据科学种植的经验,每增种1棵A种或B种作物,都会导致单棵作物平均产量减少0.2千克,而且每种作物的增种数量都不能超过原有数量的80%.设A种作物增种m棵,总产量为yA千克;B种作物增种n棵,总产量为yB千克.
种植品种
数量
A种作物B中作物
原种植量(棵)5060
原产量(千克/棵)3026
(1)A种作物增种m棵后,单棵平均产量为______千克;B种作物增种n棵后,单棵平均产量为______千克;
(2)求yA与m之间的函数关系式及yB与n之间的函数关系式;
(3)求提高种植技术后,小李增种何种作物可获得最大总产量?最大总产量是多少千克?
查看答案
已知等腰△ABC中,AB=AC,AD平分∠BAC交BC于D点,在线段AD上任取一点P(A点除外),过P点作EF∥AB,分别交AC,BC于E,F点,作PM∥AC,交AB于M点,连接ME.
(1)求证:四边形AEPM为菱形;
(2)当P点在何处时,菱形AEPM的面积为四边形EFBM面积的一半?

manfen5.com 满分网 查看答案
如图,线段AB、DC分别表示甲、乙两建筑物的高,AB⊥BC,DC⊥BC,从B点测得D点的仰角α为60°从A点测得D点的仰角β为30°,已知甲建筑物高AB=36米.
(1)求乙建筑物的高DC;
(2)求甲、乙两建筑物之间的距离BC(结果精确到0.01米).
(参考数据:manfen5.com 满分网≈1.414,manfen5.com 满分网≈1.732)

manfen5.com 满分网 查看答案
有3张不透明的卡片,除正面写有不同的数字外,其它均相同.将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字记作一次函数表达式中的k,第二次从余下的两张卡片中再随机抽取一张,上面标有的数字记作一次函数表达式中的b.
(1)写出k为负数的概率;
(2)求一次函数y=kx+b的图象经过二、三、四象限的概率.(用树状图或列表法求解)
manfen5.com 满分网
查看答案
如图,Rt△ABO的顶点A是反比例函数manfen5.com 满分网与一次函数y=-x+(k+1)的图象在第四象限的交点,AB⊥x轴于B,且S△ABO=manfen5.com 满分网
(1)求这个反比例函数和一次函数的解析式;
(2)求这个一次函数的图象与坐标轴围成的三角形的面积.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.