满分5 > 初中数学试题 >

如图,正方形ABCD的边长为1,点E是AD边上的动点,从点A沿AD向D运动,以B...

如图,正方形ABCD的边长为1,点E是AD边上的动点,从点A沿AD向D运动,以BE为边,在BE的上方作正方形BEFG,连接CG.请探究:
(1)线段AE与CG是否相等请说明理由:
(2)若设AE=x,DH=y,当x取何值时,y最大?
(3)连接BH,当点E运动到AD的何位置时,△BEH∽△BAE?

manfen5.com 满分网
(1)AE=CG,要证结论,必证△ABE≌△CBG,由正方形的性质很快确定∠3=∠4,又AB=BC,BE=BG,符合SAS即证. (2)先证△ABE∽△DEH,所以,即可求出函数解析式y=-x2+x,继而求出最值. (3)要使△BEH∽△BAE,需,又因为△ABE∽△DEH,所以,即,所以当E点是AD的中点时,△BEH∽△BAE. 【解析】 (1)AE=CG. 理由:正方形ABCD和正方形BEFG中, ∠3+∠5=90°, ∠4+∠5=90°, ∴∠3=∠4. 又AB=BC,BE=BG, ∴△ABE≌△CBG. ∴AE=CG. (2)∵正方形ABCD和正方形BEFG, ∴∠A=∠D=∠FEB=90°. ∴∠1+∠2=90°∠2+∠3=90°. ∴∠1=∠3. 又∵∠A=∠D, ∴△ABE∽△DEH. ∴. ∴. ∴y=-x2+x =-(x-)2+ 当x=时,y有最大值为. (3)【解析】 当E点是AD的中点时,△BEH∽△BAE, 理由:∵E是AD中点, ∴AE=. ∴DH=. 又∵△ABE∽△DEH, ∴. 又∵, ∴. 又∠DAB=∠FEB=90°, ∴△BEH∽△BAE.
复制答案
考点分析:
相关试题推荐
如图转动一长为4cm,宽为3cm的长方形木板,在桌面上作无滑动的翻滚(顺时针方向),木板上的点A位置变化为A→A1→A2,其中第二次翻滚时被桌面上另一小木块挡住,且使木板与桌面成30°角,则A翻滚到A2时,共经过的路径长为( )cm.manfen5.com 满分网
A.3.5π
B.4.5π
C.5π
D.10π
查看答案
manfen5.com 满分网如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中△ABC相似的是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=x+k的图象大致是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
如果4张扑克按图1的形式摆放在桌面上,将其中一张旋转180°后,扑克的放置情况如图2所示,那么旋转的扑克从左起是( )
manfen5.com 满分网
A.第一张
B.第二张
C.第三张
D.第四张
查看答案
在一张由复印机复印出来的纸上,一个多边形图案的一条边由原来的1cm变成2cm,那么这次复印出来的多边形图案面积是原来的( )
A.1倍
B.2倍
C.3倍
D.4倍
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.