满分5 > 初中数学试题 >

半径为2.5的⊙O中,直径AB的不同侧有定点C和动点P.已知BC:CA=4:3,...

manfen5.com 满分网半径为2.5的⊙O中,直径AB的不同侧有定点C和动点P.已知BC:CA=4:3,点P在manfen5.com 满分网上运动,过点C作CP的垂线,与PB的延长线交于点Q.
(1)当点P与点C关于AB对称时,求CQ的长;
(2)当点P运动到manfen5.com 满分网的中点时,求CQ的长;
(3)当点P运动到什么位置时,CQ取到最大值?求此时CQ的长.
(1)如果点P与点C关于AB对称,根据垂径定理可得出CP⊥AB,在直角三角形ABC中,根据△ABC面积的不同表示方法可求出CD的长,即可得出PC的值,进而可通过相似三角形△PQC和△ABC(∠A=∠P,一组直角)求出CQ的长. (2)当点P运动到弧AB的中点时,过点B作BE⊥PC于点E(如图);由于P是弧AB的中点,由圆周角定理得∠ACP=∠PCB=45°,由△CEB是等腰直角三角形,可得CE=BE=BC=2;又由圆周角定理得∠CPB=∠CAB,由正切的概念知tan∠CPB=tan∠CAB==BE:PE,得到PE=BE=进而求得PC,而从(1)中得,CQ=PC=. (3)如果CQ去最大值,那么PC也应该取最大值,因此当PC是圆O的直径时,CQ才取最大值.此时PC为5,可根据上面得出的PC、CQ的比例关系求出CQ的长. 【解析】 (1)当点P与点C关于AB对称时,CP⊥AB,设垂足为D. ∵AB为⊙O的直径, ∴∠ACB=90°. ∴AB=5,又∵BC:CA=4:3, ∴BC=4,AC=3. 又∵AC•BC=AB•CD ∴CD=,PC= 在Rt△ACB和Rt△PCQ中, ∠ACB=∠PCQ=90°,∠CAB=∠CPQ, Rt△ACB∽Rt△PCQ ∴, ∴CQ==PC=. (2)当点P运动到弧AB的中点时,过点B作BE⊥PC于点E(如图). ∵P是弧AB的中点, ∴∠PCB=45°,CE=BE=BC=2 又∠CPB=∠CAB ∴tan∠CPB=tan∠CAB= ∴PE=BE=,PC= 而从(1)中得,CQ=PC=. (3)点P在弧AB上运动时,恒有CQ==PC; 故PC最大时,CQ取到最大值. 当PC过圆心O,即PC取最大值5时,CQ最大值为.
复制答案
考点分析:
相关试题推荐
如图,AB是半圆O的直径,过点O作弦AD的垂线交切线AC于点C,OC与半圆O交于点E,连接BE,DE.
(1)求证:∠BED=∠C;
(2)若OA=5,AD=8,求AC的长.

manfen5.com 满分网 查看答案
在网格中画出符合下列条件的图形.(保留画图痕迹,不写画图步骤)
(1)画出所给图形关于直线BE对称的图形,并标出A、D的对应点A1、D1
(2)画出一个与直线CA、CA1都相切,且切点分别为A、A1的圆,并标出圆心O.

manfen5.com 满分网 查看答案
如图,直线l经过⊙O的圆心O,且与⊙O交于A、B两点,点C在⊙O上,且∠AOC=30°,点P是直线l上的一个动点(与圆心O不重合),直线CP与⊙O相交于另一点Q,如果QP=QO,则∠OCP=   
manfen5.com 满分网 查看答案
要在一个矩形纸片上画出半径分别是4cm和1cm的两个外切圆,该矩形纸片面积的最小值是    cm2查看答案
已知两圆的半径分别是2和3,圆心距为6,那么这两圆的位置关系是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.