满分5 > 初中数学试题 >

锐角△ABC中,BC=6,S△ABC=12,两动点M,N分别在边AB,AC上滑动...

锐角△ABC中,BC=6,S△ABC=12,两动点M,N分别在边AB,AC上滑动,且MN∥BC,以MN为边向下作正方形MPQN,设其边长为x,正方形MPQN与△ABC公共部分的面积为y(y>0)
(1)△ABC中边BC上高AD=______
(2)当x=______时,PQ恰好落在边BC上(如图1);
(3)当PQ在△ABC外部时(如图2),求y关于x的函数关系式(注明x的取值范围),并求出x为何值时y最大,最大值是多少?
manfen5.com 满分网
(1)本题利用矩形的性质和相似三角形的性质,根据MN∥BC,得△AMN∽△ABC,求出△ABC中边BC上高AD的长度. (2)因为正方形的位置在变化,但是△AMN∽△ABC没有改变,利用相似三角形对应边上高的比等于相似比,得出等量关系,代入解析式, (3)用含x的式子表示矩形MEFN边长,从而求出面积的表达式. 【解析】 (1)由BC=6,S△ABC=12,得AD=4; (2)当PQ恰好落在边BC上时, ∵MN∥BC,∴△AMN∽△ABC. ∴, 即=,x=2.4(或); (3)设BC分别交MP,NQ于E,F,则四边形MEFN为矩形. 设ME=NF=h,AD交MN于G(如图2)GD=NF=h,AG=4-h. ∵MN∥BC, ∴△AMN∽△ABC. ∴,即, ∴. ∴y=MN•NF=x(-x+4)=-x2+4x(2.4<x<6), 配方得:y=-(x-3)2+6. ∴当x=3时,y有最大值,最大值是6.
复制答案
考点分析:
相关试题推荐
如图,在正方形ABCD中,E是AB边上任意一点,∠ECF=45°,CF交AD于点F,将△CBE绕点C顺时针旋转到△CDP,点P恰好在AD的延长线上.
(1)求证:EF=PF;
(2)直线EF与以C为圆心,CD为半径的圆相切吗?为什么?

manfen5.com 满分网 查看答案
某商店购进一种商品,单价30元.试销中发现这种商品每天的销售量p(件)与每件的销售价x(元)满足关系:p=100-2x.若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元?每天要售出这种商品多少件?
查看答案
如图,把一个转盘分成四等份,依次标上数字:1,2,3,4,若连续自由转动转盘二次,指针指向的数字分别记作a,b,把a,b作为点A的横、纵坐标.
(1)求点A(a,b)的个数;
(2)求点A(a,b)在函数y=x的图象上的概率.

manfen5.com 满分网 查看答案
如图,在△ABC的外接圆O中,D是弧BC的中点,AD交BC于点E,连接BD.连接DC,DC2=DE•DA是否成立?若成立,给出证明;若不成立,举例说明.

manfen5.com 满分网 查看答案
如图,在平面直角坐标系中,△ABC和△A1B1C1关于点E成中心对称.
(1)画出对称中心E,并写出点E、A、C的坐标;
(2)P(a,b)是△ABC的边AC上一点,△ABC经平移后点P的对应点为P2(a+6,b+2),请画出上述平移后的△A2B2C2,并写出点A2、C2的坐标;
(3)判断△A2B2C2和△A1B1C1的位置关系.(直接写出结果)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.