满分5 > 初中数学试题 >

如图,已知抛物线经过坐标原点O和x轴上另一点E,顶点M的坐标为(2,4);矩形A...

如图,已知抛物线经过坐标原点O和x轴上另一点E,顶点M的坐标为(2,4);矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3.
(1)求该抛物线所对应的函数关系式;
(2)将矩形ABCD以每秒1个单位长度的速度从如图所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).
①当t=manfen5.com 满分网时,判断点P是否在直线ME上,并说明理由;
②设以P、N、C、D为顶点的多边形面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.
manfen5.com 满分网
(1)已知顶点坐标,又抛物线经过原点,用待定系数可求出抛物线解析式; (2)①根据抛物线的对称性求出E点坐标,再求出直线ME的解析式,把t知代入验证点P是否在直线ME上; ②最后一问设出P,N坐标,根据几何关系求出PN,然后分两种情况讨论:(1)PN=0;(2)PN≠0;把求多边形面积S转化为求函数最值问题. 【解析】 (1)因所求抛物线的顶点M的坐标为(2,4), 故可设其关系式为y=a(x-2)2+4(1分) 又∵抛物线经过O(0,0), ∴得a(0-2)2+4=0,(2分) 解得a=-1(3分) ∴所求函数关系式为y=-(x-2)2+4, 即y=-x2+4x.(4分) (2)①点P不在直线ME上.(5分) 根据抛物线的对称性可知E点的坐标为(4,0), 又M的坐标为(2,4), 设直线ME的关系式为y=kx+b. 于是得, 解得 所以直线ME的关系式为y=-2x+8.(6分) 由已知条件易得,当t=时,OA=AP=, ∴P(,)(7分) ∵P点的坐标不满足直线ME的关系式y=-2x+8. ∴当t=时,点P不在直线ME上.(8分) ②S存在最大值.理由如下:(9分) ∵点A在x轴的非负半轴上,且N在抛物线上, ∴OA=AP=t. ∴点P,N的坐标分别为(t,t)、(t,-t2+4t) ∴AN=-t2+4t(0≤t≤3), ∴AN-AP=(-t2+4t)-t=-t2+3t=t(3-t)≥0, ∴PN=-t2+3t(10分) (ⅰ)当PN=0,即t=0或t=3时,以点P,N,C,D为顶点的多边形是三角形,此三角形的高为AD, ∴S=DC•AD=×3×2=3.(11分) (ⅱ)当PN≠0时,以点P,N,C,D为顶点的多边形是四边形 ∵PN∥CD,AD⊥CD, ∴S=(CD+PN)•AD=[3+(-t2+3t)]×2=-t2+3t+3=-(t-)2+ 其中(0<t<3),由a=-1,0<<3,此时S最大=.(12分) 综上所述,当t=时,以点P,N,C,D为顶点的多边形面积有最大值,这个最大值为.(13分) 说明:(ⅱ)中的关系式,当t=0和t=3时也适合.
复制答案
考点分析:
相关试题推荐
锐角△ABC中,BC=6,S△ABC=12,两动点M,N分别在边AB,AC上滑动,且MN∥BC,以MN为边向下作正方形MPQN,设其边长为x,正方形MPQN与△ABC公共部分的面积为y(y>0)
(1)△ABC中边BC上高AD=______
(2)当x=______时,PQ恰好落在边BC上(如图1);
(3)当PQ在△ABC外部时(如图2),求y关于x的函数关系式(注明x的取值范围),并求出x为何值时y最大,最大值是多少?
manfen5.com 满分网
查看答案
如图,在正方形ABCD中,E是AB边上任意一点,∠ECF=45°,CF交AD于点F,将△CBE绕点C顺时针旋转到△CDP,点P恰好在AD的延长线上.
(1)求证:EF=PF;
(2)直线EF与以C为圆心,CD为半径的圆相切吗?为什么?

manfen5.com 满分网 查看答案
某商店购进一种商品,单价30元.试销中发现这种商品每天的销售量p(件)与每件的销售价x(元)满足关系:p=100-2x.若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元?每天要售出这种商品多少件?
查看答案
如图,把一个转盘分成四等份,依次标上数字:1,2,3,4,若连续自由转动转盘二次,指针指向的数字分别记作a,b,把a,b作为点A的横、纵坐标.
(1)求点A(a,b)的个数;
(2)求点A(a,b)在函数y=x的图象上的概率.

manfen5.com 满分网 查看答案
如图,在△ABC的外接圆O中,D是弧BC的中点,AD交BC于点E,连接BD.连接DC,DC2=DE•DA是否成立?若成立,给出证明;若不成立,举例说明.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.