满分5 > 初中数学试题 >

如图,在直角坐标系中,点A的坐标为(-2,0),连接OA,将线段OA绕原点O顺时...

如图,在直角坐标系中,点A的坐标为(-2,0),连接OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.
(1)求点B的坐标;
(2)求经过A、O、B三点的抛物线的解析式;
(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;
(4)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.
(注意:本题中的结果均保留根号).

manfen5.com 满分网
(1)由已知得OA=2,将线段OA绕原点O顺时针旋转120°,则OB与x轴的正方向夹角为60°,过点B作BD⊥x轴于点D,解直角三角形可得OD、BD的长,可表示B点的坐标; (2)直接将A、O、B三点坐标代入抛物线解析式的一般式,可求解析式; (3)因为点A,O关于对称轴对称,连接AB交对称轴于C点,C点即为所求,求直线AB的解析式,再根据C点的横坐标值,求纵坐标; (4)设P(x,y)(-2<x<0,y<0),用割补法可表示△PAB的面积,根据面积表达式再求取最大值时,x的值. 【解析】 (1)过点B作BD⊥x轴于点D,由已知可得:OB=OA=2,∠BOD=60°, 在Rt△OBD中,∠ODB=90°,∠OBD=30° ∴OD=1,DB= ∴点B的坐标是(1,).(2分) (2)设所求抛物线的解析式为y=ax2+bx+c(a≠0), 由已知可得:, 解得:a=,b=,c=0, ∴所求抛物线解析式为y=x2+x.(4分) (3)存在, 由y=x2+x配方后得:y=(x+1)2- ∴抛物线的对称轴为x=-1(6分) (也可用顶点坐标公式求出) ∵点C在对称轴x=-1上,△BOC的周长=OB+BC+CO; ∵OB=2,要使△BOC的周长最小,必须BC+CO最小, ∵点O与点A关于直线x=-1对称,有CO=CA △BOC的周长=OB+BC+CO=OB+BC+CA ∴当A、C、B三点共线,即点C为直线AB与抛物线对称轴的交点时,BC+CA最小,此时△BOC的周长最小. 设直线AB的解析式为y=kx+b,则有:, 解得:k=,b=, ∴直线AB的解析式为y=x+,(7分) 当x=-1时,y=, ∴所求点C的坐标为(-1,),(8分) (4)设P(x,y)(-2<x<0,y<0), 则y=x2+x① 过点P作PQ⊥y轴于点Q,PG⊥x轴于点G,过点A作AF⊥PQ轴于点F,过点B作BE⊥PQ轴于点E, 则PQ=-x,PG=-y, 由题意可得:S△PAB=S梯形AFEB-S△AFP-S△BEP(9分) =(AF+BE)•FE-AF•FP-PE•BE =(-y+-y)(1+2)-(-y)(x+2)-(1-x)(-y) =② 将①代入②, 化简得:S△PAB=-x2-x+(10分) =(x+)2+ ∴当时,△PAB得面积有最大值,最大面积为.(11分) 此时 ∴点P的坐标为.(12分)
复制答案
考点分析:
相关试题推荐
通过实验研究,专家们发现:初中学生听课的注意力指标数是随着老师讲课时间的变化而变化的,讲课开始时,学生的兴趣激增,中间有一段时间的兴趣保持平稳状态,随后开始分散.学生注意力指标数y随时间x(分钟)变化的函数图象如图所示(y越大表示注意力越集中).当0≤x≤10时,图象是抛物线的一部分,当10≤x≤20和20≤x≤40时,图象是线段.
(1)当0≤x≤10时,求注意力指标数y与时间x的函数关系式;
(2)一道数学综合题,需要讲解24分钟.问老师能否经过适当安排,使学生听这道题时,注意力的指标数都不低于36?

manfen5.com 满分网 查看答案
如图,△ABC中,∠BAC=90°,AB=AC=1,点D是BC上一个动点(不与B、C重合),在AC上取E点,使∠ADE=45度.
(1)求证:△ABD∽△DCE;
(2)设BD=x,AE=y,求y关于x的函数关系式;
(3)当:△ADE是等腰三角形时,求AE的长.

manfen5.com 满分网 查看答案
如图,梯形ABCD中,AD∥BC,且BC=2AD,E、F分别是AB、BC的中点,EF与BD相交于点M.
(1)求证:△BEM∽△DFM;
(2)若BD=12cm,求DM的长.

manfen5.com 满分网 查看答案
如图,Rt△ABC中,M是斜边AB上的一点,且MN⊥AB交AC于N,若AM=2,AB:AC=5:4,求MN的长.

manfen5.com 满分网 查看答案
如图,以正△ABC的AB边为直径画⊙O,分别交AC、BC于点D、E,已知AB=6cm,求弧DE的长及阴影部分的面积.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.