满分5 > 初中数学试题 >

一个圆锥的侧面积是底面积的3倍,则圆锥侧面展开图的扇形圆心角是( ) A.60°...

一个圆锥的侧面积是底面积的3倍,则圆锥侧面展开图的扇形圆心角是( )
A.60°
B.90°
C.120°
D.180°
根据圆锥的侧面积是底面积的3倍得到圆锥的母线长和底面半径之间的关系,进而利用扇形的弧长等于圆锥的底面周长即可求得扇形的圆心角. 【解析】 设圆锥的母线长为R,底面半径为r. ∵侧面积是底面积的3倍, ∴2πr×R÷2=3πr2, ∴R=3r. ∴=2πr, ∴n=120°
复制答案
考点分析:
相关试题推荐
如图,这是中央电视台“曲苑杂谈”中的一副图案,它是一扇形图形,其中∠AOB为120°,OC长为8cm,CA长为12cm,则阴影部分的面积为( )
manfen5.com 满分网
A.64πcm2
B.112πcm2
C.144πcm2
D.152πcm2
查看答案
以半径为1的圆内接正三角形、正方形、正六边形的边心距为三边作三角形,则( )
A.不能构成三角形
B.这个三角形是等腰三角形
C.这个三角形是直角三角形
D.这个三角形是钝角三角形
查看答案
如图,在直角坐标系中,点A的坐标为(-2,0),连接OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.
(1)求点B的坐标;
(2)求经过A、O、B三点的抛物线的解析式;
(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;
(4)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.
(注意:本题中的结果均保留根号).

manfen5.com 满分网 查看答案
通过实验研究,专家们发现:初中学生听课的注意力指标数是随着老师讲课时间的变化而变化的,讲课开始时,学生的兴趣激增,中间有一段时间的兴趣保持平稳状态,随后开始分散.学生注意力指标数y随时间x(分钟)变化的函数图象如图所示(y越大表示注意力越集中).当0≤x≤10时,图象是抛物线的一部分,当10≤x≤20和20≤x≤40时,图象是线段.
(1)当0≤x≤10时,求注意力指标数y与时间x的函数关系式;
(2)一道数学综合题,需要讲解24分钟.问老师能否经过适当安排,使学生听这道题时,注意力的指标数都不低于36?

manfen5.com 满分网 查看答案
如图,△ABC中,∠BAC=90°,AB=AC=1,点D是BC上一个动点(不与B、C重合),在AC上取E点,使∠ADE=45度.
(1)求证:△ABD∽△DCE;
(2)设BD=x,AE=y,求y关于x的函数关系式;
(3)当:△ADE是等腰三角形时,求AE的长.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.