满分5 > 初中数学试题 >

如图,在梯形ABCD中,AD∥BC,AB=AD=DC=2cm,BC=4cm,在等...

如图,在梯形ABCD中,AD∥BC,AB=AD=DC=2cm,BC=4cm,在等腰△PQR中,∠QPR=120°,底边QR=6cm,点B、C、Q、R在同一直线l上,且C、Q两点重合,如果等腰△PQR以1cm/秒的速度沿直线l箭头所示方向匀速运动,t秒时梯形ABCD与等腰△PQR重合部分的面积记为S平方厘米.
(1)当t=4时,求S的值;
(2)当4≤t≤10,求S与t的函数关系式,并求出S的最大值.
manfen5.com 满分网
(1)首先判定当t=4时,点B与点Q重合,点P与点D重合,则求△BDC的面积即可. (2)分别从4≤t<6与6≤t≤10去分析,求得各自的函数解析式,再分析各种情况下的最大值即可求得答案. 【解析】 (1)当t=4时,CQ=4cm, 过点A作AE⊥BC于E,过点D作DF⊥BC于F, ∵AE=DF=cm,∠AEB=∠DFC=90°,AB=CD, ∴△ABE≌△DFC, ∴BE=CF, ∵EF=AD=2cm,BC=4cm, ∴BE=CF=1cm, ∴点D与点P重合, ∴S△BDC=BC•DF=×4×=2(cm2); (2)当4≤t<6时,P在线段AD上,作KH⊥QH,过点M作MN⊥BC于N, ∵∠Q=30°,∠1=60°, ∴∠2=∠1-∠Q=30°, ∠3=∠2=30°, ∴QB=BM=QC-BC=t-4, ∵∠R=∠Q=30°,∠DCB=∠ABC=60°, ∴∠CKR=∠DCB-∠R=30°=∠R, ∴KC=CR=6-t, ∴HK=KC•sin60°=(6-t) ∴同理:MN=(t-4), ∴S=S△PQR-S△BQM-S△CRK=QR•PG-BQ•EM-CR•FN =×6×-×(t-4)2-×(6-t)2=-t2+5t-10, ∵a=-<0,开口向下, ∴S有最大值, 当t=-=5时,S最大值为; 当6≤t≤10时,P在线段DA的延长线上, ∵∠1=60°,∠2=30°, ∴∠3=90° ∴RC=t-6,BR=4-RC=4-(t-6)=10-t, ∴TB=BR=,TR=BR=(10-t), ∴S=TB•TR=××(10-t)=t2-t+, 当a>0时,开口向上,-=10, ∴t=6时,S最大值为2; 综上,t=5时,S最大值为.
复制答案
考点分析:
相关试题推荐
如图,一次函数y=ax+b的图象与反比例函数manfen5.com 满分网的图象交于M、N两点.
求:(1)反比例函数与一次函数的解析式;
(2)根据图象写出反比例函数的值>一次函数的值的x的取值范围.

manfen5.com 满分网 查看答案
如图,客轮沿折线A─B─C从A出发经B再到C匀速航行,货轮从AC的中点D出发沿某一方向匀速直线航行,将一批物品送达客轮,两船同时起航,并同时到达折线A─B─C上的某点E处,已知AB=BC=200海里,∠ABC=90°,客轮速度是货轮速度的2倍.
(1)选择:两船相遇之处E点( )
A、在线段AB上;B、在线段BC上;C、可以在线段AB上,也可以在线段BC上.
(2)求货轮从出发到两船相遇共航行了多少海里?

manfen5.com 满分网 查看答案
某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?
查看答案
已知:如图,平行四边形ABCD,E、F是直线AC上两点,且AE=CF
求证:四边形EBFD为平行四边形.

manfen5.com 满分网 查看答案
如图,用树状图或表格求右面两个转盘配成紫色的概率.
(提示:红色和蓝色在一起就配成紫色)
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.