平面直角坐标系内有两条直线l
1、l
2,直线l
1的解析式为
,如果将坐标纸折叠,使直线l
1与l
2重合,此时点(-2,0)与点(0,2)也重合.
(1)求直线l
2的解析式;
(2)设直线l
1与l
2相交于点M,问:是否存在这样的直线l:y=x+t,使得如果将坐标纸沿直线l折叠,点M恰好落在x轴上?若存在,求出直线l的解析式;若不存在,请说明理由;
(3)设直线l
2与x轴、y轴分别交于点A、B,点P(a,0)在x轴正半轴上运动,点Q(0,b)在y轴负半轴上运动,且PQ⊥AB,若△APQ是等腰三角形,求a,b.
考点分析:
相关试题推荐
近几年,被称为“园林城市,生态家园”的宿迁旅游业得到长足的发展,到宿迁观光旅游的客人越来越多,“真如禅寺”景点每天都吸引大量的游客前来观光.事实表明,如果游客过多,不利于保护珍贵文物,为了实施可持续发展,兼顾社会效益和经济效益,该景点拟采取浮动门票价格的方法来控制游客人数.已知每张门票原价为40元,现设浮动门票为每张x元,且40≤x≤70,经市场调研发现一天游览人数y与票价x之间存在着如图所示的一次函数关系.
(1)根据图象,求y与x之间的函数关系式;
(2)设该景点一天的门票收入为W元.
①试用x代数式表示W;
②试问:当门票定为多少时,该景点一天的门票收入最高?最高门票收入是多少?
查看答案
已知关于x的不等式ax+3>0(其中a≠0).
(1)当a=-2时,求此不等式的解,并在数轴上表示此不等式的解集;
(2)小明准备了十张形状、大小完全相同的不透明卡片,上面分别写有整数:-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,将这10张卡片写有整数的一面向下放在桌面上.从中任意抽取一张,以卡片上的数作为不等式中的系数a,求使该不等式没有正整数解的概率.
查看答案
春兰集团对应聘者甲、乙、丙进行面试,并从专业知识、工作经验、仪表形象三方面给应聘者打分,每一方面满分20分,最后的打分制成条形统计图(如图).
(1)利用图中提供的信息,在专业知识方面3人得分的极差是多少?在工作经验方面3人得分的众数是多少?在仪表形象方面谁最有优势?
(2)如果专业知识、工作经验、仪表形象三个方面的重要性之比为10:7:3,那么作为人事主管,你应该录用哪一位应聘者为什么?
(3)在(2)的条件下,你对落聘者有何建议?
查看答案
如图(一)所示的纸片是半径为10cm的圆形纸片的一部分,且弦AB的长为
cm.
(1)请你用直尺、圆规找出该圆的圆心O,并求弦AB所对的圆心角的度数;
(2)请问能否利用该纸片制作出如图(二)所示的无底冰淇淋纸筒,并说明理由.
(注:①保留作图痕迹,并用0.5黑水笔描粗;②图(2)中的冰淇淋纸筒的尺寸为:底面直径为12cm,高为8cm)
查看答案
如图,已知AB⊥CF,DE⊥CF,垂足分别为B,E,AB=DE.请添加一个适当条件,使△ABC≌△DEF,并予以证明.
添加条件:______.
查看答案