满分5 > 初中数学试题 >

我们将能完全覆盖某平面图形的最小圆称为该平面图形的最小覆盖圆.例如线段AB的最小...

我们将能完全覆盖某平面图形的最小圆称为该平面图形的最小覆盖圆.例如线段AB的最小覆盖圆就是以线段AB为直径的圆.
(1)请分别作出图1中两个三角形的最小覆盖圆;(要求用尺规作图,保留作图痕迹,不写作法)
(2)探究三角形的最小覆盖圆有何规律?请写出你所得到的结论;(不要求证明)
(3)某地有四个村庄E,F,G,H(其位置如图2所示),现拟建一个电视信号中转站,为了使这四个村庄的居民都能接收到电视信号,且使中转站所需发射功率最小(距离越小,所需功率越小),此中转站应建在何处?请说明理由.
manfen5.com 满分网

manfen5.com 满分网
本题关键要确定最小覆盖圆的半径,然后才能作答.中转站应建在△EFH的外接圆圆心处(线段EF的垂直平分线与线段EH的垂直平分线的交点处).根据△EFH是锐角三角形,可知其最小覆盖圆为△EFH的外接圆,所以中转站建在△EFH的外接圆圆心处,能够符合题中要求. 【解析】 (1)如图所示: (2)若三角形为锐角三角形,则其最小覆盖圆为其外接圆; 若三角形为直角或钝角三角形,则其最小覆盖圆是以三角形最长边(直角或钝角所对的边)为直径的圆. (3)此中转站应建在△EFH的外接圆圆心处(线段EF的垂直平分线与线段EH的垂直平分线的交点处). 理由如下: ∠HEF=∠HEG+∠GEF=47.8°+35.1°=82.9°, ∠EHF=50.0°,∠EFH=47.1°, ∴△EFH是锐角三角形,所以其最小覆盖圆为△EFH的外接圆, 设此外接圆为⊙O,直线EG与⊙O交于点E,M,则 ∠EMF=∠EHF=50.0°<53.8°=∠EGF. 故点G在⊙O内,从而⊙O也是四边形EFGH的最小覆盖圆. 所以中转站建在△EFH的外接圆圆心处,能够符合题中要求.
复制答案
考点分析:
相关试题推荐
如图,秋千拉绳长AB为3米,静止时踩板离地面0.5米,小朋友荡该秋千时,秋千在最高处时踩板离地面2米(左右对称),请计算该秋千所荡过的圆弧长?

manfen5.com 满分网 查看答案
如图所示,AB是⊙O的弦,半径OC、OD分别交AB于点E、F,且AE=BF,请你找出线段OE与OF的数量关系,并给予证明.

manfen5.com 满分网 查看答案
如图,有一个圆O和两个正六边形T1,T2. T1的6个顶点都在圆周上,T2的6条边都和圆O相切(我们称T1,T2分别为圆O的内接正六边形和外切正六边形).
(1)设T1,T2的边长分别为a,b,圆O的半径为r,求r:a及r:b的值;
(2)求正六边形T1,T2的面积比S1:S2的值.

manfen5.com 满分网 查看答案
如图,AB是⊙O的直径,点P是⊙O上的动点(P与A,B不重合),连接AP,PB,过点O分别作OE⊥AP于E,OF⊥BP于F.
(1)若AB=12,当点P在⊙O上运动时,线段EF的长会不会改变?若会改变,请说明理由;若不会改变,请求出EF的长;
(2)若AP=BP,求证四边形OEPF是正方形.

manfen5.com 满分网 查看答案
在圣诞节,小明自己动手用纸板制作圆锥形的圣诞老人帽.圆锥帽底面直径为18cm,母线长为36cm,请你计算制作一个这样的圆锥帽需用纸板的面积.(精确到个位)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.