满分5 > 初中数学试题 >

如图,线段AB经过圆心O,交⊙O于点A,C,点D在⊙O上,连接AD,BD,∠A=...

如图,线段AB经过圆心O,交⊙O于点A,C,点D在⊙O上,连接AD,BD,∠A=∠B=30度.BD是⊙O的切线吗?请说明理由.

manfen5.com 满分网
可以先猜想BD是⊙O的切线,根据切线的判定进行分析,得到OD是圆的半径,且OD⊥BD,从而可得到结论. 【解析】 BD是⊙O的切线.(2分) 连接OD; ∵OA=OD, ∴∠ADO=∠A=30°,(4分) ∵∠A=∠B=30°, ∴∠BDA=180°-(∠A+∠B)=120°,(7分) ∴∠BDO=∠BDA-∠ADO=90°, 即OD⊥BD, ∴BD是⊙O的切线.(9分) 理由1:连接OD,∵OA=OD, ∴∠ADO=∠A=30°,(4分) ∵∠A=∠B=30°, ∴∠BDA=180°-(∠A+∠B)=120,(7分) ∴∠BDO=∠BDA-∠ADO=90°,即OD⊥BD. ∴BD是⊙O的切线.(9分) 理由2:连接OD, ∵OA=OD, ∴∠ADO=∠A=30°,(4分) ∴∠BOD=∠ADO+A=60°,(7分) ∵∠B=30°, ∴∠BDO=180°-(∠BOD+∠B)=90°, 即OD⊥BD, ∴BD是⊙O的切线. (9分) 理由3:连接OD,∵OA=OD, ∴∠ADO=∠A=30°,(4分) 在BD的延长线上取一点E, ∵∠A=∠B=30°, ∴∠ADE=∠A+∠B=60°,(7分) ∴∠EDO=∠ADO+∠ADE=90°,即OD⊥BD ∴BD是⊙O的切线.(9分) 理由4:连接OD,∵OA=OD, ∴∠ADO=∠A=30°,(4分) 连接CD,则∠ADC=90°,(5分) ∴∠ODC=∠ADC-∠ADO=60°,(6分) ∵OD=OC, ∴∠OCD=60°, ∵∠B=30°, ∴∠BDC=∠OCD-∠B=30°,(7分) ∴∠ODB=∠ODC+∠BDC=90°, 即OD⊥BD, ∴BD是⊙O的切线.(9分)
复制答案
考点分析:
相关试题推荐
如图,圆柱形水管内原有积水的水平面宽CD=20cm,水深GF=2cm.若水面上升2cm(EG=2cm),则此时水面宽AB为多少?

manfen5.com 满分网 查看答案
如图,⊙O的半径为3cm,B为⊙O外一点,OB交⊙O于点A,AB=OA,动点P从点A出发,以πcm/s的速度在⊙O上按逆时针方向运动一周回到点A立即停止.当点P运动的时间为    s时,BP与⊙O相切.
manfen5.com 满分网 查看答案
manfen5.com 满分网如图所示,在边长为3的正方形ABCD中,⊙O1与⊙O2外切,且⊙O2分别于DA、DC边外切,⊙O1分别与BA、BC边外切,则圆心距,O1O2    查看答案
一个滑轮起重装置如图所示,滑轮的半径是10cm,当重物上升10cm时,滑轮的一条半径OA绕轴心O按逆时针方向旋转的角度约为    度.(假设绳索与滑轮之间没有滑动,π取3.14,结果精确到1°)
manfen5.com 满分网 查看答案
已知在⊙O中,半径r=13,弦AB∥CD,且AB=24,CD=10,则AB与CD的距离为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.