如图,在直角坐标系xoy中,点A(2,0),点B在第一象限且△OAB为等边三角形,△OAB的外接圆交y轴的正半轴于点C,过点C的圆的切线交x轴于点D.
(1)判断点C是否为弧OB的中点?并说明理由;
(2)求B、C两点的坐标;
(3)求直线CD的函数解析式;
(4)点P在线段OB上,且满足四边形OPCD是等腰梯形,求点P坐标.
考点分析:
相关试题推荐
如图,抛物线y=-x
2+bx+c与x轴的一个交点是A,与y轴的交点是B,且OA、OB(OA<OB)的长是方程x
2-6x+5=0的两个实数根.
(1)求A、B两点的坐标;
(2)求出此抛物线的解析式及顶点D的坐标;
(3)求出此抛物线与x轴的另一个交点C的坐标;
(4)在直线BC上是否存在一点P,使四边形PDCO为梯形?若存在,求出P点坐标;若不存在,说明理由.
查看答案
如图,AB为⊙O的直径,割线PCD交⊙O于C、D,∠PAC=∠PDA.
(1)求证:PA是⊙O的切线;
(2)若PA=6,CD=3PC,求PD的长.
查看答案
如图,OA、OC是⊙O的半径,OA=1,且OC⊥OA,点D在弧AC上,弧AD=2弧CD,在OC求一点P,使PA+PD最小,并求这个最小值.
查看答案
如图,在梯形ABCD中,AD∥BC,AB⊥AC,∠B=45°,AD=
,BC=4
,求DC的长.
查看答案
有3张背面相同的纸牌A,B,C,其正面分别画有三个不同的图形(如图)将这3张纸牌背面朝上洗匀后摸出1张,放回洗匀后再摸1张.
(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A,B,C表示);
(2)求摸出两张牌面图形都是轴对称图形的纸牌的概率;
(3)小华和小明玩游戏,规定:若摸出两张牌面图形都是轴对称图形的纸牌,则小华赢;否则,小明赢.请你说明此规定是否公平?
查看答案