满分5 > 初中数学试题 >

如图,在平面直角坐标系中,以点C(1,1)为圆心,2为半径作圆,交x轴于A,B两...

如图,在平面直角坐标系中,以点C(1,1)为圆心,2为半径作圆,交x轴于A,B两点,开口向下的抛物线经过点A,B,且其顶点P在⊙C上.
(1)求∠ACB的大小;
(2)写出A,B两点的坐标;
(3)试确定此抛物线的解析式;
(4)在该抛物线上是否存在一点D,使线段OP与CD互相平分?若存在,求出点D的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)可通过构建直角三角形来求解.过C作CH⊥AB于H,在直角三角形ACH中,根据半径及C点的坐标即可用三角形函数求出∠ACB的值. (2)根据垂径定理可得出AH=BH,然后在直角三角形ACH中可求出AH的长,再根据C点的坐标即可得出A、B两点的坐标. (3)根据抛物线和圆的对称性,即可得出圆心C和P点必在抛物线的对称轴上,因此可得出P点的坐标为(1,3).然后可用顶点式二次函数通式来设抛物线的解析式.根据A或B的坐标即可确定抛物线的解析式. (4)如果OP、CD互相平分,那么四边形OCPD是平行四边形.因此PC平行且相等于OD,那么D点在y轴上,且坐标为(0,2).然后将D点坐标代入抛物线的解析式中即可判定出是否存在这样的点. 【解析】 (1)作CH⊥x轴,H为垂足, ∵CH=1,半径CB=2, ∵∠BCH=60°, ∴∠ACB=120°. (2)∵CH=1,半径CB=2 ∴HB=, 故A(1-,0),B(1+,0). (3)由圆与抛物线的对称性可知抛物线的顶点P的坐标为(1,3) 设抛物线解析式y=a(x-1)2+3, 把点B(1+,0)代入上式,解得a=-1; ∴y=-x2+2x+2. (4)假设存在点D使线段OP与CD互相平分,则四边形OCPD是平行四边形 ∴PC∥OD且PC=OD. ∵PC∥y轴, ∴点D在y轴上. 又∵PC=2, ∴OD=2,即D(0,2). 又D(0,2)满足y=-x2+2x+2, ∴点D在抛物线上 所以存在D(0,2)使线段OP与CD互相平分.
复制答案
考点分析:
相关试题推荐
如图,⊙O为四边形ABCD的外接圆,圆心O在AD上,OC∥AB.
(1)求证:AC平分∠DAB;
(2)若AC=8,manfen5.com 满分网,试求⊙O的半径;
(3)若点B为manfen5.com 满分网的中点,试判断四边形ABCO的形状.

manfen5.com 满分网 查看答案
某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件.市场调查反映:如果每件的售价每涨1元(售价每件不能高于45元),那么每星期少卖10件.设每件涨价x元(x为非负整数),每星期的销量为y件.
(1)求y与x的函数关系式及自变量x的取值范围;
(2)如何定价才能使每星期的利润最大且每星期的销量较大?每星期的最大利润是多少?
查看答案
要测量一个钢板上的小孔的直径,通常采用间接的测量方法.如果用一个直径为10mm的标准钢珠放在小孔上,测的钢珠顶端与小孔平面的距离h=8 mm(如图),求此小孔的直径d.

manfen5.com 满分网 查看答案
设△ABC中BC边的长为x厘米,BC边上的高AD为y厘米,△ABC的面积是常数,已知y关于x的函数图象过点(3,4).
(1)y关于x的函数解析式和△ABC的面积;
(2)利用函数图象,求2<x<8时y的取值范围.
查看答案
如图是一个以线段AB为直径的半圆,请用圆规和直尺作出一个30°的角,使这个角的顶点在线段AB或manfen5.com 满分网上.(不要求写作法,但要保留作图痕迹)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.