如图,在△ABC中,∠A=110°,∠B=35°,请你应用变换的方法得到一个三角形使它与△ABC全等,且要求得到的三角形与原△ABC组成一个四边形.
(1)要求用两种变换方法解决上述问题;(写出变换名称,画出图形即可)
(2)指出四边形是什么图形?(不要求证明)
说明:如用两种平移变换方法解决此题算一种变换;两种变换是指平移、旋转等不同变换.
考点分析:
相关试题推荐
在如图的方格纸中,将等腰△ABC绕底边BC的中点0旋转180°.
(1)画出旋转后的图形;
(2)观察:旋转后得到的三角形与原三角形拼成什么图形?为什么?
(3)若要使拼成的图形为正方形,那么△ABC应满足什么条件?为什么?
查看答案
如图,是一个8×10正方形格纸,△ABC中A点坐标为(-2,1).
(1)△ABC和△A′B′C′满足什么几何变换;(直接写答案)
(2)作△A′B′C′关于x轴对称图形△A″B″C″;
(3)△ABC和△A″B″C″满足什么几何变换?求A″、B″、C″三点坐标(直接写答案).
查看答案
如图,点O、B坐标分别为(0,0)、(3,0),将△OAB绕O点按逆时针方向旋转90°到OA′B′.
(1)画出△OA′B′;
(2)点A′的坐标为______;
(3)求BB′的长.
查看答案
如图(a),两个不全等的等腰直角三角形OAB和OCD叠放在一起,并且有公共的直角顶点O.
(1)将图(a)中的△OAB绕点O顺时针旋转90°角,在图(b)中作出旋转后的△OAB(保留作图痕迹,不写作法,不证明);
(2)在图(a)中,你发现线段AC,BD的数量关系是______,直线AC,BD相交成______度角;
(3)将图(a)中的△OAB绕点O顺时针旋转一个锐角,得到图(c),这时(2)中的两个结论是否成立?作出判断并说明理由.若△OAB绕点O继续旋转更大的角时,结论仍然成立吗?作出判断,不必说明理由.
查看答案
如图,在平面直角坐标系中,已知等腰梯形ABCD,AB=AD=DC=2,∠ABC=60°,等腰梯形ABCD称为基本图形,记为图①,现将图①沿AD翻折后平移得到图②;然后将图②以A
1为旋转中心,顺时针旋转60°,再向上平移8个单位,得到图③;以y轴为对称轴作图③的对称图形,得到等腰梯形A
3B
3C
3D
3,即为图④.
(1)画出图④的图形,写出点A、A
2、A
3的坐标;
(2)将图②、图③、图④通过适当的平移,与图①拼到一起,组成一个新的等腰梯形A
4B
4C
4D
4①在拼成新等腰梯形的过程中,图④经过了怎样的平移?
②对于等腰梯形A
4B
4C
4D
4,能否将其中的一个小等腰梯形经过一次图形变换,变成一个平行四边形?如果能,请说明变换过程;如果不能请说明理由.
查看答案