如图,AB是⊙O的直径,BC是弦,OD⊥BC于E,交
于D.
(1)请写出四个不同类型的正确结论;
(2)连接CD,设∠CDB=α,∠ABC=β,试找出α与β之间的一种关系式,并予以证明.
考点分析:
相关试题推荐
如图,△ABC中,E、F分别是AB、AC上的点.
①AD平分∠BAC,②DE⊥AB,DF⊥AC,③AD⊥EF.
以此三个中的两个为条件,另一个为结论,可构成三个命题,即:
①②⇒③,①③⇒②,②③⇒①.
(1)试判断上述三个命题是否正确(直接作答);
(2)请证明你认为正确的命题.
查看答案
在探讨圆周角与圆心角的大小关系时,小亮首先考虑了一种特殊情况(圆心在圆周角的一边上)如图1所示:
∵∠AOC是△ABO的外角
∴∠AOC=∠ABO+∠BAO
又∵OA=OB
∴∠OAB=∠OBA
∴∠AOC=2∠ABO
即∠ABC=
∠AOC
如果∠ABC的两边都不经过圆心,如图2、3,那么结论会怎样?请你说明理由.
查看答案
已知:如图,点O
2是⊙O
1上一点,⊙O
2与⊙O
1相交于A、D两点,BC⊥AD,垂足为D,分别交⊙O
1、⊙O
2于B、C两点,延长DO
2交⊙O
2于E,交BA延长线于F,BO
2交AD于G,连接AD.
(1)求证:∠BGD=∠C;
(2)若∠DO
2C=45°,求证:AD=AF;
(3)若BF=6CD,且线段BD、BF的长是关于x的方程x
2-(4m+2)x+4m
2+8=0的两个实数根,求BD、BF的长.
查看答案
如图,⊙O的弦AB=10,P是弦AB所对优弧上的一个动点,tan∠APB=2,
(1)若△APB为直角三角形,求PB的长;
(2)若△APB为等腰三角形,求△APB的面积.
查看答案
已知:如图1,在⊙O中,弦AB=2,CD=1,AD⊥BD.直线AD,BC相交于点E.
(1)求∠E的度数;
(2)如果点C,D在⊙O上运动,且保持弦CD的长度不变,那么,直线AD,BC相交所成锐角的大小是否改变?试就以下三种情况进行探究,并说明理由(图形未画完整,请你根据需要补全).
①如图2,弦AB与弦CD交于点F;
②如图3,弦AB与弦CD不相交;
③如图4,点B与点C重合.
查看答案