如图1,在平面直角坐标系中,等边三角形ABC的两顶点坐标分别为A(1,0),B(2,
),CD为△ABC的中线,⊙M与△ACD的外接圆,BC交⊙M于点N.
(1)将直线AB绕点D顺时针旋转使得到的直线l与⊙M相切,求此时的旋转角及直线l的解析式;
(2)连接MN,试判断MN与CD是否互相垂直平分,并说明理由;
(3)在(1)中的直线l上是否存在点P,使△PAN为直角三角形?若存在,求出所有满足条件的点P的坐标;若不存在,请说明理由.(图2为备用图)
考点分析:
相关试题推荐
如图所示,直线L与两坐标轴的交点坐标分别是A(-3,0),B(0,4),O是坐标系原点.
(1)求直线L所对应的函数的表达式;
(2)若以O为圆心,半径为R的圆与直线L相切,求R的值.
查看答案
已知:直线y=kx(k≠0)经过点(3,-4).
(1)求k的值;
(2)将该直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相离(点O为坐标原点),试求m的取值范围.
查看答案
要对一块长60米、宽40米的矩形荒地ABCD进行绿化和硬化.
(1)设计方案如图①所示,矩形P、Q为两块绿地,其余为硬化路面,P、Q两块绿地周围的硬化路面宽都相等,并使两块绿地面积的和为矩形ABCD面积的
,求P、Q两块绿地周围的硬化路面的宽.
(2)某同学有如下设想:设计绿化区域为相外切的两等圆,圆心分别为O
1和O
2,且O
1到AB、BC、AD的距离与O
2到CD、BC、AD的距离都相等,其余为硬化地面,如图②所示,这个设想是否成立?若成立,求出圆的半径;若不成立,说明理由.
查看答案
如图,⊙O的半径OA=6,以A为圆心、OA为半径的弧交⊙O于B、C,则BC=
.
查看答案
如图,圆O
1与圆O
2相交于A、B两点,它们的半径都为2,圆O
1经过点O
2,则四边形O
1AO
2B的面积为
.
查看答案