已知一次函数y=x+2的图象分别交x轴,y轴于A、B两点,⊙O
1过以OB为边长的正方形OBCD的四个顶点,两动点P、Q同时从点A出发在四边形ABCD上运动,其中动点P以每秒
个单位长度的速度沿A→B→A运动后停止;动点Q以每秒2个单位长度的速度沿A→O→D→C→B运动,AO
1交y轴于E点,P、Q运动的时间为t(秒).
(1)直接写出E点的坐标和S
△ABE的值;
(2)试探究点P、Q从开始运动到停止,直线PQ与⊙O
1有哪几种位置关系,并指出对应的运动时间t的范围;
(3)当Q点运动在折线AD→DC上时,是否存在某一时刻t使得S
△APQ:S
△ABE=3:4?若存在,请确定t的值和直线PQ所对应的函数解析式;若不存在,说明理由.
考点分析:
相关试题推荐
如图1,在平面直角坐标系中,等边三角形ABC的两顶点坐标分别为A(1,0),B(2,
),CD为△ABC的中线,⊙M与△ACD的外接圆,BC交⊙M于点N.
(1)将直线AB绕点D顺时针旋转使得到的直线l与⊙M相切,求此时的旋转角及直线l的解析式;
(2)连接MN,试判断MN与CD是否互相垂直平分,并说明理由;
(3)在(1)中的直线l上是否存在点P,使△PAN为直角三角形?若存在,求出所有满足条件的点P的坐标;若不存在,请说明理由.(图2为备用图)
查看答案
如图所示,直线L与两坐标轴的交点坐标分别是A(-3,0),B(0,4),O是坐标系原点.
(1)求直线L所对应的函数的表达式;
(2)若以O为圆心,半径为R的圆与直线L相切,求R的值.
查看答案
已知:直线y=kx(k≠0)经过点(3,-4).
(1)求k的值;
(2)将该直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相离(点O为坐标原点),试求m的取值范围.
查看答案
要对一块长60米、宽40米的矩形荒地ABCD进行绿化和硬化.
(1)设计方案如图①所示,矩形P、Q为两块绿地,其余为硬化路面,P、Q两块绿地周围的硬化路面宽都相等,并使两块绿地面积的和为矩形ABCD面积的
,求P、Q两块绿地周围的硬化路面的宽.
(2)某同学有如下设想:设计绿化区域为相外切的两等圆,圆心分别为O
1和O
2,且O
1到AB、BC、AD的距离与O
2到CD、BC、AD的距离都相等,其余为硬化地面,如图②所示,这个设想是否成立?若成立,求出圆的半径;若不成立,说明理由.
查看答案
如图,⊙O的半径OA=6,以A为圆心、OA为半径的弧交⊙O于B、C,则BC=
.
查看答案