满分5 > 初中数学试题 >

如图,在直角梯形ABCD中,AB∥CD,∠B=90°,AB=AD,∠BAD的平分...

如图,在直角梯形ABCD中,AB∥CD,∠B=90°,AB=AD,∠BAD的平分线交BC于E,连接DE.
(1)说明点D在△ABE的外接圆上;
(2)若∠AED=∠CED,试判断直线CD与△ABE外接圆的位置关系,并说明理由.

manfen5.com 满分网
(1)根据题中条件AB=AD,∠BAO=∠DAO,AO=AO可证明△AOB≌△AOD,所以OD=OB,可证点D在△ABE的外接圆上; (2)根据∠C=90°,可得∠CED+∠CDE=90°;利用∠ODE=∠DEC,可知∠ODC=∠CDE+∠ODE=∠CDE+∠CED=90°,即CD与△ABE的外接圆相切. 证明:(1)证法一:∵∠B=90°, ∴AE是△ABE外接圆的直径. 取AE的中点O,则O为圆心,连接OB、OD. 在△AOB和△AOD中, , ∴△AOB≌△AOD. ∴OD=OB. ∴点D在△ABE的外接圆上. 证法二:∵∠B=90°, ∴AE是△ABE外接圆的直径. 在△ABE和△ADE中, , ∴△ABE≌△ADE. ∴∠ADE=∠B=90°. 取AE的中点O,则O为圆心,连接OD,则OD=AE. ∴点D在△ABE的外接圆上. (2)证法一:直线CD与△ABE的外接圆相切. 理由:∵AB∥CD,∠B=90度.∴∠C=90°. ∴∠CED+∠CDE=90°. 又∵OE=OD, ∴∠ODE=∠OED. 又∠AED=∠CED, ∴∠ODE=∠DEC. ∴∠ODC=∠CDE+∠ODE=∠CDE+∠CED=90°. ∴CD与△ABE的外接圆相切. 证法二:直线CD与△ABE的外接圆相切. 理由:∵AB∥CD,∠B=90度.∴∠C=90°. 又∵OE=OD, ∴∠ODE=∠OED. 又∠AED=∠CED, ∴∠ODE=∠DEC. ∴OD∥BC. ∴∠ODC=90°. ∴CD与△ABE的外接圆相切.
复制答案
考点分析:
相关试题推荐
如图,在平面直角坐标系中,以A(5,1)为圆心,以2个单位长度为半径的⊙A交x轴于点B、C,解答下列问题:
(1)将⊙A向左平移______个单位长度与y轴首次相切,得到⊙A′,此时点A′的坐标为______,阴影部分的面积S=______
(2)求BC的长.

manfen5.com 满分网 查看答案
如图,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB延长线上一点,AE⊥DC交DC的延长线于点E,且AC平分∠EAB.
(1)求证:DE是⊙O的切线;
(2)若AB=6,AE=manfen5.com 满分网,求BD和BC的长.

manfen5.com 满分网 查看答案
如图,△ABC是⊙O的内接三角形,AC=BC,D为⊙O中manfen5.com 满分网上一点,延长DA至点E,使CE=CD.
(1)求证:AE=BD;
(2)若AC⊥BC,求证:AD+BD=manfen5.com 满分网CD.

manfen5.com 满分网 查看答案
如图,已知⊙O是△ABC的外接圆,CD是AB边上的高,AE是⊙O的直径.求证:AC•BC=AE•CD.

manfen5.com 满分网 查看答案
我们将能完全覆盖某平面图形的最小圆称为该平面图形的最小覆盖圆.例如线段AB的最小覆盖圆就是以线段AB为直径的圆.
(1)请分别作出图1中两个三角形的最小覆盖圆;(要求用尺规作图,保留作图痕迹,不写作法)
(2)探究三角形的最小覆盖圆有何规律?请写出你所得到的结论;(不要求证明)
(3)某地有四个村庄E,F,G,H(其位置如图2所示),现拟建一个电视信号中转站,为了使这四个村庄的居民都能接收到电视信号,且使中转站所需发射功率最小(距离越小,所需功率越小),此中转站应建在何处?请说明理由.
manfen5.com 满分网

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.