满分5 > 初中数学试题 >

如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过...

如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.
(1)求证:点E是边BC的中点;
(2)若EC=3,BD=manfen5.com 满分网,求⊙O的直径AC的长度;
(3)若以点O,D,E,C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.

manfen5.com 满分网
(1)利用EC为⊙O的切线,ED也为⊙O的切线可求EC=ED,再求得EB=EC,EB=ED可知点E是边BC的中点; (2)解答此题需要运用圆切线和割线的性质和勾股定理求解; (3)判定△ABC是等腰直角三角形时要用到正方形的性质来求得相等的边. (1)证明:连接DO; ∵∠ACB=90°,AC为直径, ∴EC为⊙O的切线; 又∵ED也为⊙O的切线, ∴EC=ED, 又∵∠EDO=90°, ∴∠BDE+∠ADO=90°, ∴∠BDE+∠A=90° 又∵∠B+∠A=90°, ∴∠BDE=∠B, ∴EB=ED, ∴EB=EC,即点E是边BC的中点; (2)【解析】 ∵BC,BA分别是⊙O的切线和割线, ∴BC2=BD•BA, ∴(2EC)2=BD•BA,即BA•2=36, ∴BA=3, 在Rt△ABC中,由勾股定理得 AC===3; (3)【解析】 △ABC是等腰直角三角形. 理由:∵四边形ODEC为正方形, ∴∠DOC=∠ACB=90°,即DO∥BC, 又∵点E是边BC的中点, ∴BC=2OD=AC, ∴△ABC是等腰直角三角形.
复制答案
考点分析:
相关试题推荐
如图①,②,在平面直角坐标系xOy中,点A的坐标为(4,0),以点A为圆心,4为半径的圆与x轴交于O,B两点,OC为弦,∠AOC=60°,P是x轴上的一动点,连接CP.
(1)求∠OAC的度数;
(2)如图①,当CP与⊙A相切时,求PO的长;
(3)如图②,当点P在直径OB上时,CP的延长线与⊙A相交于点Q,问PO为何值时,△OCQ是等腰三角形?

manfen5.com 满分网 查看答案
manfen5.com 满分网(1)当a=manfen5.com 满分网,b=2时,求manfen5.com 满分网的值;
(2)如图,在⊙O中,AB是直径,∠BOC=120°,PC是⊙O的切线,切点是C,点D在劣弧BC上运动.当∠CPD满足什么条件时,直线PD与直线AB垂直?证明你的结论.
查看答案
已知:如图,AB是⊙O的弦,点C在manfen5.com 满分网上.
(1)若∠OAB=35°,求∠AOB的度数;
(2)过点C作CD∥AB,若CD是⊙O的切线,求证:点C是manfen5.com 满分网的中点.

manfen5.com 满分网 查看答案
如图1,在等边△ABC中,AD⊥BC于点D,一个直径与AD相等的圆与BC相切于点E、与AB相切于点F,连接EF.
(1)判断EF与AC的位置关系(不必说明理由);
(2)如图2,过E作BC的垂线,交圆于G,连接AG,判断四边形ADEG的形状,并说明理由;
(3)求证:AC与GE的交点O为此圆的圆心.
manfen5.com 满分网
查看答案
为了测量一个圆形铁环的半径,某同学采用了如下办法:将铁环平放在水平桌面上,用一个锐角为30°的三角板和一个刻度尺,按如图所示的方法得到相关数据,进而可求得铁环的半径,若三角板与圆相切且测得PA=5cm,求铁环的半径.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.