满分5 > 初中数学试题 >

如图,矩形ABCD的边AD、AB分别与⊙O相切于点E、F, (1)求的长; (2...

如图,矩形ABCD的边AD、AB分别与⊙O相切于点E、F,manfen5.com 满分网
(1)求manfen5.com 满分网的长;
(2)若manfen5.com 满分网,直线MN分别交射线DA、DC于点M、N,∠DMN=60°,将直线MN沿射线DA方向平移,设点D到直线的距离为d,当时1≤d≤4,请判断直线MN与⊙O的位置关系,并说明理由.

manfen5.com 满分网
(1)连接OE、OF,利用相切证明四边形AFOE是正方形,再根据弧长公式求弧长; (2)先求出直线M1N1与圆相切时d的值,结合1≤d≤4,划分d的范围,分类讨论. 【解析】 (1)连接OE、OF, ∵矩形ABCD的边AD、AB分别与⊙O相切于点E、F, ∴∠A=90°,∠OEA=∠OFA=90° ∴四边形AFOE是正方形 ∴∠EOF=90°,OE=AE= ∴的长==π. (2)如图,将直线MN沿射线DA方向平移,当其与⊙O相切时,记为M1N1,切点为R,交AD于M1,交BC于N1, 连接OM1、OR, ∵M1N1∥MN ∴∠DM1N1=∠DMN=60° ∴∠EM1N1=120° ∵MA、M1N1切⊙O于点E、R ∴∠EM1O=∠EM1N1=60° 在Rt△EM1O中,EM1===1 ∴DM1=AD-AE-EM1=+5--1=4. 过点D作DK⊥M1N1于K 在Rt△DM1K中 DK=DM1×sin∠DM1K=4×sin∠60°=2即d=2, ∴当d=2时,直线MN与⊙O相切, 当1≤d<2时,直线MN与⊙O相离, 当直线MN平移到过圆心O时,记为M2N2,点D到M2N2的距离d=DK+OR=2+=3>4, ∴当2<d≤4时,MN直线与⊙O相交.
复制答案
考点分析:
相关试题推荐
附加题:对于本试卷第19题:“图中△ABC外接圆的圆心坐标是”.请再求:
(1)该圆圆心到弦AC的距离;
(2)以BC为旋转轴,将△ABC旋转一周所得几何体的全面积.(所有表面面积之和)

manfen5.com 满分网 查看答案
如图,有一块半圆形钢板,直径AB=20cm,计划将此钢板切割成下底为AB的等腰梯形,上底CD的端点在圆周上,且CD=10cm.
(1)求梯形ABCD面积;
(2)求图中阴影部分的面积.

manfen5.com 满分网 查看答案
问题探究:
(1)如图①所示是一个半径为manfen5.com 满分网,高为4的圆柱体和它的侧面展开图,AB是圆柱的一条母线,一只蚂蚁从A点出发沿圆柱的侧面爬行一周到达B点,求蚂蚁爬行的最短路程.(探究思路:将圆柱的侧面沿母线AB剪开,它的侧面展开图如图①中的矩形ABB′A′,则蚂蚁爬行的最短路程即为线段AB′的长);
(2)如图②所示是一个底面半径为manfen5.com 满分网,母线长为4的圆锥和它的侧面展开图,PA是它的一条母线,一只蚂蚁从A点出发沿圆锥的侧面爬行一周后回到A点,求蚂蚁爬行的最短路程;
(3)如图③所示,在②的条件下,一只蚂蚁从A点出发沿圆锥的侧面爬行一周到达母线PA上的一点,求蚂蚁爬行的最短路程.
manfen5.com 满分网
查看答案
如图①、②、③是两个半径都等于2的⊙O1和⊙O2,由重合状态沿水平方向运动到互相外切过程中的三个位置,⊙O1和⊙O2相交于A、B两点,分别连接O1A、O1B、O2A、O2B和AB.
(1)如图②,当∠AO1B=120°时,求两圆重叠部分图形的周长l;
(2)设∠AO1B的度数为x,两圆重叠部分图形的周长为y,求y关于x的函数关系式,并写出自变量x的取值范围;
(3)由(2),若y=2π,则线段O2A所在的直线与⊙O1有何位置关系,为什么?除此之外,它们还有其它的位置关系,写出其它位置关系时x的取值范围.(奖励提示:如果你还能解决下列问题,将酌情另加1~5分,并计入总分.)
在原题的条件下,设∠AO1B的度数为2n,可以发现有些图形的面积S也随∠AO1B变化而变化,试求出其中一个S与n的关系式,并写出n的取值范围.
manfen5.com 满分网
查看答案
某市为了进一步改善居民的生活环境,园林处决定增加公园A和公园B的绿化面积.已知公园A,B分别有如图1,图2所示的阴影部分需铺设草坪,在甲、乙两地分别有同种草皮1608m2和1200m2出售,且售价一样.若园林处向甲、乙两地购买草皮,其路程和运费单价见下表:
  公园A 公园B
 路程(千米) 运费单价(元)路程(千米) 运费单价(元) 
甲地  30 0.25 32 0.25
 乙地 22 0.3 30 0.3
(注:运费单价指将每平方米草皮运送1千米所需的人民币)
manfen5.com 满分网
(1)分别求出公园A,B需铺设草坪的面积;(结果精确到1m2
(2)请设计出总运费最省的草皮运送方案,并说明理由.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.