满分5 > 初中数学试题 >

图中的粗线CD表示某条公路的一段,其中AmB是一段圆弧,AC、BD是线段,且AC...

图中的粗线CD表示某条公路的一段,其中AmB是一段圆弧,AC、BD是线段,且AC、BD分别与圆弧manfen5.com 满分网相切于点A、B,线段AB=180m,∠ABD=150度.
(1)画出圆弧manfen5.com 满分网的圆心O;
(2)求A到B这段弧形公路的长.

manfen5.com 满分网
(1)利用切线的性质,从A,B两点作垂线交点就是圆心. (2)根据给出的角的条件求出圆的圆心角,利用弧长公式计算. 【解析】 (1)如图,过A作AO⊥AC,过B作BO⊥BD,AO与BO相交于O,O即圆心.(3分) 说明:若不写作法,必须保留作图痕迹.其它作法略. (2)∵AO、BO都是圆弧的半径,O为圆心, ∴∠OBA=∠OAB=150°-90°=60度.(5分) ∴△AOB为等边三角形.∴AO=BO=AB=180.(7分) ∴(m). ∴A到B这段弧形公路的长为60πm.(10分)
复制答案
考点分析:
相关试题推荐
如图1至图5,⊙O均作无滑动滚动,⊙O1、⊙O2、⊙O3、⊙O4均表示⊙O与线段AB或BC相切于端点时刻的位置,⊙O的周长为c.
阅读理【解析】

(1)如图1,⊙O从⊙O1的位置出发,沿AB滚动到⊙O2的位置,当AB=c时,⊙O恰好自转1周;
(2)如图2,∠ABC相邻的补角是n°,⊙O在∠ABC外部沿A-B-C滚动,在点B处,必须由⊙O1的位置旋转到⊙O2的位置,⊙O绕点B旋转的角∠O1BO2=n°,⊙O在点B处自转manfen5.com 满分网周.
实践应用:
(1)在阅读理解的(1)中,若AB=2c,则⊙O自转______周;若AB=l,则⊙O自转______周.在阅读理解的(2)中,若∠ABC=120°,则⊙O在点B处自转______周;若∠ABC=60°,则⊙O在点B处自转______周;
(2)如图3,∠ABC=90°,AB=BC=manfen5.com 满分网c.⊙O从⊙O1的位置出发,在∠ABC外部沿A-B-C滚动到⊙O4的位置,⊙O自转______周.
拓展联想:
(1)如图4,△ABC的周长为l,⊙O从与AB相切于点D的位置出发,在△ABC外部,按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,⊙O自转了多少周?请说明理由;
(2)如图5,多边形的周长为l,⊙O从与某边相切于点D的位置出发,在多边形外部,按顺时针方向沿多边形滚动,又回到与该边相切于点D的位置,直接写出⊙O自转的周数.
manfen5.com 满分网
查看答案
如图1,在⊙O中,AB为⊙O的直径,AC是弦,OC=4,∠OAC=60度.
(1)求∠AOC的度数;
(2)在图1中,P为直径BA延长线上的一点,当CP与⊙O相切时,求PO的长;
(3)如图2,一动点M从A点出发,在⊙O上按逆时针方向运动,当S△MAO=S△CAO时,求动点M所经过的弧长.
manfen5.com 满分网
查看答案
已知△ABC在平面直角坐标系中的位置如图所示.
(1)分别写出图中点A和点C的坐标;
(2)画出△ABC绕点C按顺时针方向旋转90°后的△A′B′C′;
(3)求点A旋转到点A′所经过的路线长(结果保留π).

manfen5.com 满分网 查看答案
如图,已知AB是⊙O的直径,点C在⊙O上,P是△OAC的重心,且OP=manfen5.com 满分网,∠A=30度.
(1)求劣弧manfen5.com 满分网的长;
(2)若∠ABD=120°,BD=1,求证:CD是⊙O的切线.

manfen5.com 满分网 查看答案
如图,点O、A、B的坐标分别为(0,0)、(3,0)、(3,-2),将△OAB绕点O按逆时针方向旋转90°得到△OA′B′.
(1)画出旋转后的△OA′B′,并求点B′的坐标;
(2)求在旋转过程中,点A所经过的路径manfen5.com 满分网的长度.(结果保留π)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.