满分5 > 初中数学试题 >

如图Rt△ABO中,∠A=30°,OB=2,如果将Rt△ABO在坐标平面内,绕原...

如图Rt△ABO中,∠A=30°,OB=2,如果将Rt△ABO在坐标平面内,绕原点O按顺时针方向旋转到OA′B′的位置.
(1)求点B′的坐标.
(2)求顶点A从开始到A′点结束经过的路径长.

manfen5.com 满分网
(1)过点B′作B′D⊥x轴于D,由旋转的性质可知OB′的长,从而求出OD,DB′的长.就可写出坐标. (2)顶点A从开始到A′点结束经过的路径长就是一段弧长,由已知题中给出的条件圆心角是120度,半径是OA的长度,然后利用弧长公式计算. 【解析】 (1)过点B′作B′D⊥x轴于D, 由旋转的性质知,∠A′=30°,∠A′OB′=60°,OB′=2,OA′=4, ∴OD=OB′cos60°==1, DB′=OB′sin60°=2, ∴B′的坐标为:B′(1,. (2)∵∠AOB=60°,∴∠AOA′=180°-60°=120°. ∴A由开始到结束所经过的路径长为:.
复制答案
考点分析:
相关试题推荐
在平面直角坐标系中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N(如图).
(1)求边OA在旋转过程中所扫过的面积;
(2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;
(3)设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.

manfen5.com 满分网 查看答案
如下示意图,是我市香菇培植场常见的半地下室栽培棚,它由两部分组成,地上部分为半圆柱形四周封闭的塑料薄膜保温棚;地下部分为长方体的培植室,室内长30米,宽1.2米的地面上存放菌棒培育香菇.
(1)地下培植室内按标准排放菌棒,宽排放8袋,长每米排放4排,求能排放多少袋香菇菌棒?
(2)要建这样的保温棚约需多少平方米的塑料薄膜?(不计余料及埋在土里的塑料薄膜,结果精确到0.1平方米)

manfen5.com 满分网 查看答案
下图是一纸杯,它的母线AC和EF延长后形成的立体图形是圆锥.该圆锥的侧面展开图形是扇形OAB.经测量,纸杯上开口圆的直径为6cm,下底面直径为4cm,母线长EF=8cm.求扇形OAB的圆心角及这个纸杯的表面积.(面积计算结果用π表示).

manfen5.com 满分网 查看答案
如图,这是一个由圆柱体材料加工而成的零件,它是以圆柱体的上底面为底面,在其内部“掏取”一个与圆柱体等高的圆锥体而得到的,其底面直径AB=12cm,高BC=8cm,求这个零件的表面积.(结果保留π)

manfen5.com 满分网 查看答案
如图,圆锥的底面半径r=3cm,高h=4cm.求这个圆锥的表面积.(π取3.14)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.