满分5 > 初中数学试题 >

如图,⊙O的直径AB=6cm,D为⊙O上一点,∠BAD=30°,过点D的切线交A...

如图,⊙O的直径AB=6cm,D为⊙O上一点,∠BAD=30°,过点D的切线交AB的延长线于点C.求∠ADC的度数及AC的长.

manfen5.com 满分网
可通过构建直角三角形来求解.连接OD,那么OD⊥CD,这时∠ADC=∠ADO+90°,我们不难发现∠ADO=∠A=30°,因此∠DC=120°;根据三角形的内角和,那么∠C=30°,直角三角形ODC中,有OD的长,∠C=30°,可求出OC的值,也就求出了AC的长. 【解析】 (1)连接OD, ∵AO=OD, ∴∠ADO=∠DAO=30°, ∵CD是⊙O的切线, ∴∠CDO=90°, ∴∠ADC=∠ADO+∠CDO=30°+90°=120°; (2)由(1)知∠COD=60°且OD=AO=AB=3cm, 在Rt△COD中,∠C=30°, ∴OC=2OD=6cm, ∴AC=AO+OC=3+6=9cm.
复制答案
考点分析:
相关试题推荐
(人教版)已知:OA、OB是⊙O的半径,且OA⊥OB,P是射线OA上一点(点A除外),直线BP交⊙O于点Q,过Q作⊙O的切线交直线OA于点E.
(1)如图①,若点P在线段OA上,求证:∠OBP+∠AQE=45°;
(2)若点P在线段OA的延长线上,其它条件不变,∠OBP与∠AQE之间是否存在某种确定的等量关系?请你完成图②,并写出结论(不需要证明).
manfen5.com 满分网
查看答案
如图,已知AB是⊙O的直径,AC是弦,CD切⊙O于点C,交AB的延长线于点D,∠ACD=120°,BD=10.
(1)求证:CA=CD;
(2)求⊙O的半径.

manfen5.com 满分网 查看答案
已知:∠MAN=30°,O为边AN上一点,以O为圆心,2为半径作⊙O,交AN于D、E两点,设AD为x.manfen5.com 满分网
(1)如图1,当x为何值时,⊙O与AM相切;
(2)如图2,当x为何值时,⊙O与AM相交于B、C两点,且∠BOC=90度.
查看答案
如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.
(1)求证:点E是边BC的中点;
(2)若EC=3,BD=manfen5.com 满分网,求⊙O的直径AC的长度;
(3)若以点O,D,E,C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.

manfen5.com 满分网 查看答案
如图①,②,在平面直角坐标系xOy中,点A的坐标为(4,0),以点A为圆心,4为半径的圆与x轴交于O,B两点,OC为弦,∠AOC=60°,P是x轴上的一动点,连接CP.
(1)求∠OAC的度数;
(2)如图①,当CP与⊙A相切时,求PO的长;
(3)如图②,当点P在直径OB上时,CP的延长线与⊙A相交于点Q,问PO为何值时,△OCQ是等腰三角形?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.