如图1,两半径为r的等圆⊙O
1和⊙O
2相交于M,N两点,且⊙O
2过点O
1.过M点作直线AB垂直于MN,分别交⊙O
1和⊙O
2于A,B两点,连接NA,NB.
(1)猜想点O
2与⊙O
1有什么位置关系,并给出证明;
(2)猜想△NAB的形状,并给出证明;
(3)如图2,若过M的点所在的直线AB不垂直于MN,且点A,B在点M的两侧,那么(2)中的结论是否成立,若成立请给出证明.
考点分析:
相关试题推荐
如图1,已知Rt△ABC中,∠CAB=30°,BC=5.过点A作AE⊥AB,且AE=15,连接BE交AC于点P.
(1)求PA的长;
(2)以点A为圆心,AP为半径作⊙A,试判断BE与⊙A是否相切,并说明理由;
(3)如图2,过点C作CD⊥AE,垂足为D.以点A为圆心,r为半径作⊙A;以点C为圆心,R为半径作⊙C.若r和R的大小是可变化的,并且在变化过程中保持⊙A和⊙C相切,且使D点在⊙A的内部,B点在⊙A的外部,求r和R的变化范围.
查看答案
如图,点A,B在直线MN上,AB=11厘米,⊙A,⊙B的半径均为1厘米.⊙A以每秒2厘米的速度自左向右运动,与此同时,⊙B的半径也不断增大,其半径r(厘米)与时间t(秒)之间的关系式为r=1+t(t≥0).
(1)试写出点A,B之间的距离d(厘米)与时间t(秒)之间的函数表达式;
(2)问点A出发后多少秒两圆相切?
查看答案
如图,点I是△ABC的内心,AI的延长线交边BC于点D,交△ABC外接圆OO于点E,连接BE、CE.
(1)若AB=2CE,AD=6,求CD的长;
(2)求证:C、I两个点在以点E为圆心,EB为半径的圆上.
查看答案
如图,AB是⊙O的直径,CD切⊙O于E,AC⊥CD于C,BD⊥CD于D,交⊙O于F,连接AE、EF.
(1)求证:AE是∠BAC的平分线;
(2)若∠ABD=60°,则AB与EF是否平行?请说明理由.
查看答案
如图,O为正方形ABCD对角线上一点,以O为圆心,OA长为半径的⊙O与BC相切于点M.
(1)求证:CD与⊙O相切.
(2)若正方形ABCD的边长为1,求⊙O的半径.
查看答案