满分5 > 初中数学试题 >

如图1,在平面直角坐标系中,抛物线y=ax2+c与x轴正半轴交于点F(16,0)...

如图1,在平面直角坐标系中,抛物线y=ax2+c与x轴正半轴交于点F(16,0),与y轴正半轴交于点E(0,16),边长为16的正方形ABCD的顶点D与原点O重合,顶点A与点E重合,顶点C与点F重合.
(1)求抛物线的函数表达式;
(2)如图2,若正方形ABCD在平面内运动,并且边BC所在的直线始终与x轴垂直,抛物线始终与边AB交于点P且同时与边CD交于点Q(运动时,点P不与A,B两点重合,点Q不与C,D两点重合).设点A的坐标为(m,n)(m>0).
①当PO=PF时,分别求出点P和点Q的坐标;
②在①的基础上,当正方形ABCD左右平移时,请直接写出m的取值范围;
③当n=7时,是否存在m的值使点P为AB边的中点?若存在,请求出m的值;若不存在,请说明理由.

manfen5.com 满分网
(1)将F点的坐标代入抛物线的解析式中,即可求出待定系数的值,由此确定该抛物线的解析式; (2)①若PO=PF,那么P点位于OF的垂直平分线上,此时P点的横坐标是F点横坐标的一半;将其代入抛物线的解析式中,即可求出P点的坐标;易知正方形的边长为16,根据P点的坐标即可确定Q点的纵坐标,进而可由抛物线的解析式确定Q点的坐标; ②在①中,求得P(8,12),Q(8,-4);当P、A重合时,m=8;当Q、C重合时,m=8-16;由于P、A,Q、C都不重合,所以m的取值范围应该是8-16<m<8; ③当n=7时,P点的纵坐标为7,Q点的纵坐标为-9,根据抛物线的解析式可确定P、Q的坐标;假设P是AB的中点,根据这个条件可确定A、B、C、D四点的坐标,然后判断P、Q是否与这四点重合,若重合则与已知矛盾,那么就不存在符合条件的m值,若不重合,所得A点的横坐标即为所求的m值. 【解析】 (1)由抛物线y=ax2+c经过点E(0,16),F(16,0)得: 解得,(3分) ∴.(4分) (2)①过点P做PG⊥x轴于点G, ∵PO=PF, ∴OG=FG, ∵F(16,0), ∴OF=16, ∴OG=×OF=×16=8, 即P点的横坐标为8, ∵P点在抛物线上, ∵m>0, ∴y=, 即P点的纵坐标为12, ∴P(8,12),(6分) ∵P点的纵坐标为12,正方形ABCD边长是16, ∴Q点的纵坐标为-4, ∵Q点在抛物线上, ∴, ∴, ∵m>0, ∴, ∴, ∴.(8分) ②8-16<m<8.(10分) ③不存在.(11分) 理由:当n=7时,则P点的纵坐标为7, ∵P点在抛物线上, ∴, ∴x1=12,x2=-12, ∵m>0 ∴x2=-12(舍去) ∴x=12 ∴P点坐标为(12,7) ∵P为AB中点, ∴, ∴点A的坐标是(4,7), ∴m=4,(12分) 又∵正方形ABCD边长是16, ∴点B的坐标是(20,7),点C的坐标是(20,-9), ∴点Q的纵坐标为-9, ∵Q点在抛物线上, ∴, ∴x1=20,x2=-20, ∵m>0, ∴x2=-20(舍去) ∴x=20, ∴Q点坐标(20,-9), ∴点Q与点C重合,这与已知点Q不与点C重合矛盾, ∴当n=7时,不存在这样的m值使P为AB的边的中点. (14分)
复制答案
考点分析:
相关试题推荐
已知:抛物线y=(k-1)x2+2kx+k-2与x轴有两个不同的交点.
(1)求k的取值范围;
(2)当k为整数,且关于x的方程3x=kx-1的解是负数时,求抛物线的解析式;
(3)在(2)的条件下,若在抛物线和x轴所围成的封闭图形内画出一个最大的正方形,使得正方形的一边在x轴上,其对边的两个端点在抛物线上,试求出这个最大正方形的边长?

manfen5.com 满分网 查看答案
如图,以A为顶点的抛物线与y轴交于点B、已知A、B两点的坐标分别为(3,0)、(0,4).
(1)求抛物线的解析式;
(2)设M(m,n)是抛物线上的一点(m、n为正整数),且它位于对称轴的右侧.若以M、B、O、A为顶点的四边形四条边的长度是四个连续的正整数,求点M的坐标;
(3)在(2)的条件下,试问:对于抛物线对称轴上的任意一点P,PA2+PB2+PM2>28是否总成立?请说明理由.
manfen5.com 满分网
查看答案
已知抛物线y=x2+bx+c交x轴于A(1,0)、B(3,0)两点,交y轴于点C,其顶点为D.
(1)求b、c的值并写出抛物线的对称轴;
(2)连接BC,过点O作直线OE⊥BC交抛物线的对称轴于点E.求证:四边形ODBE是等腰梯形;
(3)抛物线上是否存在点Q,使得△OBQ的面积等于四边形ODBE的面积的manfen5.com 满分网?若存在,求点Q的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,抛物线y=-manfen5.com 满分网x2+c与x轴交于点A、B,且经过点D(-manfen5.com 满分网
(1)求c;
(2)若点C为抛物线上一点,且直线AC把四边形ABCD分成面积相等的两部分,试说明AC平分BD,且求出直线AC的解析式;
(3)x轴上方的抛物线y=-manfen5.com 满分网x2+c上是否存在两点P、Q,满足Rt△AQP全等于Rt△ABP?若存在,求出P、Q两点;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,在平面直角坐标系中,已知点A、B、C的坐标分别为(-1,0),(5,0),(0,2).
(1)求过A、B、C三点的抛物线解析式;
(2)若点P从A点出发,沿x轴正方向以每秒1个单位长度的速度向B点移动,连接PC并延长到点E,使CE=PC,将线段PE绕点P顺时针旋转90°得到线段PF,连接FB.若点P运动的时间为t秒,(0≤t≤6)设△PBF的面积为S;
①求S与t的函数关系式;
②当t是多少时,△PBF的面积最大,最大面积是多少?
(3)点P在移动的过程中,△PBF能否成为直角三角形?若能,直接写出点F的坐标;若不能,请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.