满分5 > 初中数学试题 >

如图,设抛物线C1:y=a(x+1)2-5,C2:y=-a(x-1)2+5,C1...

如图,设抛物线C1:y=a(x+1)2-5,C2:y=-a(x-1)2+5,C1与C2的交点为A,B,点A的坐标是(2,4),点B的横坐标是-2.
(1)求a的值及点B的坐标;
(2)点D在线段AB上,过D作x轴的垂线,垂足为点H,在DH的右侧作正三角形DHG.记过C2顶点M的直线为l,且l与x轴交于点N.
①若l过△DHG的顶点G,点D的坐标为(1,2),求点N的横坐标;
②若l与△DHG的边DG相交,求点N的横坐标的取值范围.

manfen5.com 满分网
(1)由于两个抛物线同时经过A、B两点,将A点坐标代入两个抛物线中,即可求得待定系数的值,进而可求出B点的坐标. (2)①已知了点D的坐标,即可求得正△DGH的边长,过G作GE⊥DH于E,易求得DE、EH、EG的长;根据(1)题所求得的C2的解析式,即可求出点M的坐标,也就能得到ME、MH的长,易证△MEG∽△MHN,根据相似三角形所得比例线段,即可求得N点的横坐标. ②求点N横坐标的取值范围,需考虑N点横坐标最大、最小两种情况: ①当点D、A重合,且直线l经过点G时,N点的横坐标最大;解法可参照(2)的思路,过点G作GQ⊥x轴于Q,过点M作MF⊥x轴于F,设出点N的横坐标,然后分别表示出NQ、NF的长,通过证△NQG∽△NFM,根据所得比例线段,即可求得此时N点的横坐标; ②当点D、B重合,直线l过点D时,N点的横坐标最小,解法同①. 【解析】 (1)∵点A(2,4)在抛物线C1上, ∴把点A坐标代入y=a(x+1)2-5得a=1, ∴抛物线C1的解析式为y=x2+2x-4, 设B(-2,b), ∴b=-4, ∴B(-2,-4); (2)①如图 ∵M(1,5),D(1,2),且DH⊥x轴, ∴点M在DH上,MH=5, 过点G作GE⊥DH,垂足为E, 由△DHG是正三角形,可得EG=,EH=1, ∴ME=4, 设N(x,0),则NH=x-1, 由△MEG∽△MHN,得, ∴, ∴x=, ∴点N的横坐标为; ②当点D移到与点A重合时,如图, 直线l与DG交于点G,此时点N的横坐标最大; 过点G,M作x轴的垂线,垂足分别为点Q,F, 设N(x,0), ∵A(2,4),即AH=4,且△AGH为等边三角形, ∴∠AHG=60°,HG=AH=4, ∴∠GHQ=30°,又∠GQH=90°, ∴GQ=HG=2,HQ==2, ∴OQ=OH+HQ=2+2, ∴G(,2), ∴NQ=,NF=x-1,GQ=2,MF=5, ∵△NGQ∽△NMF, ∴, ∴, ∴, 当点D移到与点B重合时,如图: 直线l与DG交于点D,即点B, 此时点N的横坐标最小; ∵B(-2,-4), ∴H(-2,0),D(-2,-4), 设N(x,0), ∵△BHN∽△MFN, ∴, ∴, ∴, ∴点N横坐标的范围为≤x≤且x≠0.
复制答案
考点分析:
相关试题推荐
如图所示,抛物线y=ax2+c(a>0)经过梯形ABCD的四个顶点,梯形的底AD在x轴上,其中A(-2,0),B(-1,-3).
(1)求抛物线的解析式;
(2)点M为y轴上任意一点,当点M到A,B两点的距离之和为最小时,求此时点M的坐标;
(3)在第(2)问的结论下,抛物线上的点P使S△PAD=4S△ABM成立,求点P的坐标.

manfen5.com 满分网 查看答案
如图1,在平面直角坐标系中,抛物线y=ax2+c与x轴正半轴交于点F(16,0),与y轴正半轴交于点E(0,16),边长为16的正方形ABCD的顶点D与原点O重合,顶点A与点E重合,顶点C与点F重合.
(1)求抛物线的函数表达式;
(2)如图2,若正方形ABCD在平面内运动,并且边BC所在的直线始终与x轴垂直,抛物线始终与边AB交于点P且同时与边CD交于点Q(运动时,点P不与A,B两点重合,点Q不与C,D两点重合).设点A的坐标为(m,n)(m>0).
①当PO=PF时,分别求出点P和点Q的坐标;
②在①的基础上,当正方形ABCD左右平移时,请直接写出m的取值范围;
③当n=7时,是否存在m的值使点P为AB边的中点?若存在,请求出m的值;若不存在,请说明理由.

manfen5.com 满分网 查看答案
已知:抛物线y=(k-1)x2+2kx+k-2与x轴有两个不同的交点.
(1)求k的取值范围;
(2)当k为整数,且关于x的方程3x=kx-1的解是负数时,求抛物线的解析式;
(3)在(2)的条件下,若在抛物线和x轴所围成的封闭图形内画出一个最大的正方形,使得正方形的一边在x轴上,其对边的两个端点在抛物线上,试求出这个最大正方形的边长?

manfen5.com 满分网 查看答案
如图,以A为顶点的抛物线与y轴交于点B、已知A、B两点的坐标分别为(3,0)、(0,4).
(1)求抛物线的解析式;
(2)设M(m,n)是抛物线上的一点(m、n为正整数),且它位于对称轴的右侧.若以M、B、O、A为顶点的四边形四条边的长度是四个连续的正整数,求点M的坐标;
(3)在(2)的条件下,试问:对于抛物线对称轴上的任意一点P,PA2+PB2+PM2>28是否总成立?请说明理由.
manfen5.com 满分网
查看答案
已知抛物线y=x2+bx+c交x轴于A(1,0)、B(3,0)两点,交y轴于点C,其顶点为D.
(1)求b、c的值并写出抛物线的对称轴;
(2)连接BC,过点O作直线OE⊥BC交抛物线的对称轴于点E.求证:四边形ODBE是等腰梯形;
(3)抛物线上是否存在点Q,使得△OBQ的面积等于四边形ODBE的面积的manfen5.com 满分网?若存在,求点Q的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.