满分5 > 初中数学试题 >

如图所示,平面直角坐标系中,抛物线y=ax2+bx+c经过A(0,4)、B(-2...

如图所示,平面直角坐标系中,抛物线y=ax2+bx+c经过A(0,4)、B(-2,0)、C(6,0).过点A作AD∥x轴交抛物线于点D,过点D作DE⊥x轴,垂足为点E.点M是四边形OADE的对角线的交点,点F在y轴负半轴上,且F(0,-2).
(1)求抛物线的解析式,并直接写出四边形OADE的形状;
(2)当点P、Q从C、F两点同时出发,均以每秒1个长度单位的速度沿CB、FA方向运动,点P运动到O时P、Q两点同时停止运动.设运动的时间为t秒,在运动过程中,以P、Q、O、M四点为顶点的四边形的面积为S,求出S与t之间的函数关系式,并写出自变量的取值范围;
(3)在抛物线上是否存在点N,使以B、C、F、N为顶点的四边形是梯形?若存在,直接写出点N的坐标;不存在,说明理由.

manfen5.com 满分网
(1)由抛物线y=ax2+bx+c经过A(0,4)、B(-2,0)、C(6,0)三点,把三点坐标代入抛物线表达式中,联立方程解出a、b、c. (2)过M作MN⊥OE于N,则MN=2,由题意可知CP=FQ=t,当0≤t<2时,OP=6-t,OQ=2-t,列出S与t的关系式,当t=2时,Q与O重合,点M、O、P、Q不能构成四边形,当2<t<6时,连接MO,ME则MO=ME且∠QOM=∠PEM=45°,可证三角形全等,进而计算出三角形面积. (3)若B、C、F、N为顶点的四边形是梯形,则四边形有两边平行,设出N点的坐标,分类讨论两边平行时N点坐标满足的条件,进而求出N点坐标. 【解析】 (1)∵抛物线经过A(0,4)、B(-2,0)、C(6,0), ∴c=4, , 解得a=-,b=,c=4. ∴抛物线的解析式为y=-x2+x+4. 四边形OADE为正方形. (2)连接MQ. 根据题意,可知OE=OA=4,OC=6OB=OF=2, ∴CE=2, ∴CO=FA=6, ∵运动的时间为t, ∴CP=FQ=t, 过M作MN⊥OE于N,则MN=2, 当0≤t<2时,OP=6-t,OQ=2-t, ∴S=S△OPQ+S△OPM=(6-t)×2+(6-t)(2-t)=(6-t)(4-t), ∴S=t2-5t+12. 当t=2时,Q与O重合,点M、O、P、Q不能构成四边形, 当2<t<6时,连接MO,ME则MO=ME且∠QOM=∠PEM=45°, ∵FQ=CP=t,FO=CE=2, ∴OQ=EP, ∴△QOM≌△PEM, ∴四边形OPMQ的面积S=S△MOE=×4×2=4, 综上所述,当0≤t<2时,S=t2-5t+12;当2<t<6时,S=4. (3)分三种情况: ①以BF为底边时,经过点C作BF的平行线,与抛物线交于点N的坐标为(1,5); ②以CF为底边时,经过点B作CF的平行线,与抛物线交于点N的坐标为(5,); ③以BC为底边时,经过点F作BC的平行线,与抛物线交于点N的坐标为(2+,-2)或(2-,-2). 故在抛物线上存在点N1(1,5),N2(5,),N3(2+,-2),N4(2-,-2), 使以B、C、F、N为顶点的四边形是梯形.
复制答案
考点分析:
相关试题推荐
如图,直线y=-x-1与抛物线y=ax2+bx-4都经过点A(-1,0)、C(3,-4).
(1)求抛物线的解析式;
(2)动点P在线段AC上,过点P作x轴的垂线与抛物线相交于点E,求线段PE长度的最大值;
(3)当线段PE的长度取得最大值时,在抛物线上是否存在点Q,使△PCQ是以PC为直角边的直角三角形?若存在,请求出Q点的坐标;若不存在.请说明理由.

manfen5.com 满分网 查看答案
如图所示,已知直线y=kx-1与抛物线y=ax2+bx+c交于A(-3,2)、B(0,-1)两点,抛物线的顶点为C(-1,-2),对称轴交直线AB于点D,连接OC.
(1)求k的值及抛物线的解析式;
(2)若P为抛物线上的点,且以P、A、D三点构成的三角形是以线段AD为一条直角边的直角三角形,请求出满足条件的点P的坐标;
(3)在(2)的条件下所得的三角形是否与△OCD相似?请直接写出判断结果,不必写出证明过程.

manfen5.com 满分网 查看答案
如图所示,在直角梯形OABC,CB,OA,∠OAB=90°,点O为坐标原点,点A在x半轴上,对角线OB,AC相交于点M,OA=AB=4,OA=2CB.
(1)线段OB的长为______

manfen5.com 满分网 查看答案
在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.
(1)求抛物线的解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S、求S关于m的函数关系式,并求出S的最大值.
(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.

manfen5.com 满分网 查看答案
如图所示,抛物线y=ax2+bx+c经过原点O,与x轴交于另一点N,直线y=kx+4与两坐标轴分别交于A、D两点,与抛物线交于B(1,m)、C(2,2)两点.
(1)求直线与抛物线的解析式;
(2)若抛物线在x轴上方的部分有一动点P(x,y),设∠PON=α,求当△PON的面积最大时tanα的值;
(3)若动点P保持(2)中的运动路线,问是否存在点P,使得△POA的面积等于△PON面积的manfen5.com 满分网?若存在,请求出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.