满分5 > 初中数学试题 >

如图所示,对称轴为x=3的抛物线y=ax2+2x与x轴相交于点B,O. (1)求...

如图所示,对称轴为x=3的抛物线y=ax2+2x与x轴相交于点B,O.
(1)求抛物线的解析式,并求出顶点A的坐标;
(2)连接AB,把AB所在的直线平移,使它经过原点O,得到直线l.点P是l上一动点.设以点A、B、O、P为顶点的四边形面积为S,点P的横坐标为t,当0<S≤18时,求t的取值范围;
(3)在(2)的条件下,当t取最大值时,抛物线上是否存在点Q,使△OPQ为直角三角形且OP为直角边?若存在,直接写出点Q的坐标;若不存在,说明理由.

manfen5.com 满分网
(1)根据抛物线的对称轴方程即可确定a的值,由此可得到抛物线的解析式,通过配方可求出顶点A的坐标; (2)根据A、B的坐标,易求得直线AB的解析式,进而可确定直线l的解析式,即可表示出P点的坐标;由于P点的位置不确定,因此本题要分成两种情况考虑: ①P点位于第四象限,此时t>0,四边形AOPB的面积可由△OAB和△OBP的面积和求得,由此可得到关于S、t的函数关系式,根据S的取值范围即可判断出t的取值范围; ②P点位于第二象限,此时t<0,可分别过A、P作x轴的垂线,设垂足为N、M;那么四边形AOPB的面积即可由梯形APMN与△ABN的面积和再减去△OPM的面积求得,由此可得到关于S、t的函数关系式,可参照①的方法求出t的取值范围; 结合上面两种情况即可得到符合条件的t的取值范围; (3)根据(2)的结论,可求出t的最大值,由此可得到P点的坐标;若△OPQ为直角三角形且OP为直角边,那么有两种情况需要考虑:①∠QOP=90°,②∠OPQ=90°; 可分别过Q、O作直线l的垂线m、n,由于互相垂直的两直线斜率的乘积为-1,根据直线l的解析式以及Q、O的坐标,即可求出直线m、n的解析式,联立抛物线的解析式即可求出Q点的坐标. 【解析】 (1)∵点B与O(0,0)关于x=3对称, ∴点B坐标为(6,0). 将点B坐标代入y=ax2+2x得: 36a+12=0; ∴a=. ∴抛物线解析式为.(2分) 当x=3时,; ∴顶点A坐标为(3,3).(3分) (说明:可用对称轴为,求a值,用顶点式求顶点A坐标) (2)设直线AB解析式为y=kx+b. ∵A(3,3),B(6,0), ∴ 解得, ∴y=-x+6. ∵直线l∥AB且过点O, ∴直线l解析式为y=-x. ∵点P是l上一动点且横坐标为t, ∴点P坐标为(t,-t).(4分) 当P在第四象限时(t>0), S=S△AOB+S△OBP =×6×3+×6×|-t| =9+3t. ∵0<S≤18, ∴0<9+3t≤18, ∴-3<t≤3. 又t>0, ∴0<t≤3.(5分) 当P在第二象限时(t<0), 作PM⊥x轴于M,设对称轴与x轴交点为N, 则S=S梯形ANMP+S△ANB-S△PMO = = =-3t+9; ∵0<S≤18, ∴0<-3t+9≤18, ∴-3≤t<3; 又t<0, ∴-3≤t<0;(6分) ∴t的取值范围是-3≤t<0或0<t≤3. (3)存在,点Q坐标为(3,3)或(6,0)或(-3,-9).(9分) 由(2)知t的最大值为3,则P(3,-3); 过O、P作直线m、n垂直于直线l; ∵直线l的解析式为y=-x, ∴直线m的解析式为y=x; 可设直线n的解析式为y=x+h,则有: 3+h=-3,h=-6; ∴直线n:y=x-6; 联立直线m与抛物线的解析式有: , 解得,; ∴Q1(3,3); 同理可联立直线n与抛物线的解析式,求得Q2(6,0),Q3(-3,-9). (说明:点Q坐标答对一个给1分)
复制答案
考点分析:
相关试题推荐
如图,抛物线F:y=ax2+bx+c(a>0)与y轴相交于点C,直线L1经过点C且平行于x轴,将L1向上平移t个单位得到直线L2,设L1与抛物线F的交点为C、D,L2与抛物线F的交点为A、B,连接AC、BC.
(1)当manfen5.com 满分网manfen5.com 满分网,c=1,t=2时,探究△ABC的形状,并说明理由;
(2)若△ABC为直角三角形,求t的值(用含a的式子表示);
(3)在(2)的条件下,若点A关于y轴的对称点A’恰好在抛物线F的对称轴上,连接A’C,BD,求四边形A’CDB的面积(用含a的式子表示)
manfen5.com 满分网
查看答案
如图,平面直角坐标系中有一直角梯形OMNH,点H的坐标为(-8,0),点N的坐标为(-6,-4).
(1)画出直角梯形OMNH绕点O旋转180°的图形OABC,并写出顶点A,B,C的坐标(点M的对应点为A,点N的对应点为B,点H的对应点为C);
(2)求出过A,B,C三点的抛物线的表达式;
(3)截取CE=OF=AD=m,且E,F,D分别在线段CO,OA,AB上,求四边形BEFD的面积S与m之间的函数关系式,并写出自变量m的取值范围;面积S是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由;
(4)在(3)的情况下,四边形BEFD是否存在邻边相等的情况?若存在,请直接写出此时m的值,并指出相等的邻边;若不存在,说明理由.
manfen5.com 满分网
查看答案
已知二次函数y=ax2+bx+c的图象经过点A(3,0),B(2,-3),C(0,-3).
(1)求此函数的解析式及图象的对称轴;
(2)点P从B点出发以每秒0.1个单位的速度沿线段BC向C点运动,点Q从O点出发以相同的速度沿线段OA向A点运动,其中一个动点到达端点时,另一个也随之停止运动.设运动时间为t秒.
①当t为何值时,四边形ABPQ为等腰梯形;
②设PQ与对称轴的交点为M,过M点作x轴的平行线交AB于点N,设四边形ANPQ的面积为S,求面积S关于时间t的函数解析式,并指出t的取值范围;当t为何值时,S有最大值或最小值.

manfen5.com 满分网 查看答案
如图,抛物线与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,-3),设抛物线的顶点为D.
(1)求该抛物线的解析式与顶点D的坐标;
(2)以B、C、D为顶点的三角形是直角三角形吗?为什么?
(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCD相似?若存在,请指出符合条件的点P的位置,并直接写出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,已知二次函数y=ax2-4x+c的图象与坐标轴交于点A(-1,0)和点B(0,-5).
(1)求该二次函数的解析式;
(2)已知该函数图象的对称轴上存在一点P,使得△ABP的周长最小.请求出点P的坐标.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.